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Foundations of Educational Neuroscience:
Integrating Theory, Experiment, and Design

Abstract
Neuroscientists and educationists share an interest in learning, suggesting that 

neuroscience can inform education. Despite educators’ eagerness to apply neuroscience 

to improve their practice, however, few clear examples o f such applications exist. Many 

researchers point to the gap separating microscopic neural processes from macroscopic 

classroom behaviors as a major obstacle to establishing the neuroscience-education 

bridge. In this thesis, I describe methods for bridging this gap using computational 

models to link neural mechanisms to behavioral patterns, and then using these causal 

neural-behavioral models to inform education. This application of computational models 

in principle bridges the gap, but in turn raises new issues concerning the validity and 

interpretability o f model properties in relation to human cognition and behavior. The 

main contribution of this thesis is a set of analytical and experimental tools for addressing 

the theoretical and practical problems arising in this context.

As I develop the general neuroscience-education tools, I simultaneously 

demonstrate their application in a specific case. First, I derive a novel analytical 

framework for comparing disparate psychological theories. I use this framework to 

justify my selection of an artificial neural network (ANN) over other candidate models, to 

explain how the ANN relates to human brain and behavior, and to identify a specific 

neural mechanism that could inform education. Next, I describe an experimental 

paradigm in which predictions of the neural mechanism are tested against human learning 

data using multi-level regression models in a novel way to relate ANN behavior to human 

behavior. Finally, I discuss implications of the research for the educationally relevant
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phenomenon of knowledge transfer. The experimental findings are consistent with the 

model predictions, and on the whole the case study demonstrates the feasibility of using 

the proposed methods to bridge the neuroscience-education gap in the near term.
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Chapter 1 

Introduction: Scientific Research in 
Educational Neuroscience

Background and Motivation
For millennia, mainstream education has been organized almost exclusively 

around behavioral paradigms, hi particular, behavioral data (for example, from 

classroom assessments or cognitive psychology experiments) provide the basis for 

educational designs, and interventions based on these designs are evaluated in turn using 

behavioral outcome measures (for example, gains on a summative assessment). In this 

view, education is approached as a process of shaping behavior toward specific 

educational goals, using behavioral data to track progress and keep students on course 

toward these goals (Figure 1.1a).

It is true that cognitive psychology has contributed much educationally relevant 

theory and data over the last fifty years by introducing the “mind” into the discourse and 

characterizing some of its features (Anderson, 1983, 1995; Chomsky, 1959; Gardner, 

1985; Jeffress, 1951; Miller, 1956; Newell & Simon, 1961, 1972). Nonetheless, 

cognitive psychology’s theory of the mind is based on behavioral data (Gazzaniga, Ivry,

& Mangun, 2002; Simon, 1992). As such, the construct of the mind in this paradigm is 

really a systematic and parsimonious re-description of observed behavioral patterns 

having some predictive power. Cognitive psychology undeniably represents an advance 

over many competing frameworks for making sense of human behavior—and in 

particular for informing educational research and design (cf. Bruer, 1993; Carver &

Klahr, 2001; McGilly, 1995)—but it is still fundamentally a behavioral paradigm itself.
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Figure 1.1: Competing perspectives on brain, behavior, and education

a) The typical mental model of education is 
based on behavior, not neuroscience.

informs

Behavior V...

shapes

Sl
Education

b) In reality, educational processes shape 
behavior by inducing neural changes.

informs
.......

I
Behavior

causes

5l
Education

Brain
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Many educators recognize at some level that the brain must have a role in 

knowledge acquisition and application. Because the nature of this role is obscure, 

however, neuroscience does not explicitly inform most people’s thinking about 

education. The problem is that educational interventions do not shape behavior directly; 

instead, they directly influence unobservable neural mechanisms and processes that in 

turn generate observable behavior (Figure 1.1b). The brain is unavoidably in the critical 

path of educational processes, and ignoring it does not nullify its effects.

In the absence of an explicit scientific theory of how neural mechanisms cause 

observable behavior, educators and educational content producers must be relying on 

implicit theories of this relationship. We know that intuitive theories tend to be wrong in 

virtually every domain where they are studied—including physics (Hecht & Bertamini, 

2000; McCloskey, Washburn, & Felch, 1983; Reiner, Slotta, Chi, & Resnick, 2000; 

Viennot, 1979; Zago & Lacquaniti, 2005), biology (Atran, 1995, 1996, 2002; Carey,

1985; Gelman & Raman, 2002; Hamill, 1979; Hatano & Inagaki, 1994; Inagaki &

Hatano, 2004; Medin & Atran, 2004), chemistry (Demircioglu, Ozmen, & Ayas, 2004; 

Galley, 2004; Gopal, Kleinsmidt, Case, & Musonge, 2004; Mulford & Robinson, 2002; 

Ozmen, 2004), economics (Altmann & Bums, 2005; Brown, 2005; Dunn, Wilson, & 

Gilbert, 2003; Holzl, Kirchler, & Rodler, 2002; Lemer, Small, & Loewenstein, 2004; 

Oliver, 2004; Sanford, 2004; Shiv, Loewenstein, & Bechara, 2005), and psychology 

(Bereiter & Scardamalia, 1996; Clark, 1987; Cosmides & Tooby, 1994; Gilbert, Pinel, 

Brown, & Wilson, 2000; Gilbert & Wilson, 2000; Goldman, 1993; Haslam, 2005; 

Kashima, McKintyre, & Clifford, 1998; Malle, 1999; Nichols, 2004; Rosch, 1994).

Hence, it would be most surprising if people’s spontaneous theories of brain function
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were accurate, especially since the human brain is the most complex artifact in the known 

universe. A major motivation for this dissertation is the idea that education can be 

improved—perhaps dramatically—if scientifically rigorous insights about brain-behavior 

relationships can be made accessible to educators.

Problems with Current Efforts to Apply Neuroscience to 
Education

In recent years, people have become enthusiastic about integrating neuroscience 

into education. In the academic sphere, many universities, schools of education, and 

research institutes are establishing programs, research agendas, and funding opportunities 

to support systematic work in this area. Most of this formal research has been initiated 

fairly recently. Judging by the published educational research literature, these efforts 

have not yet produced findings that are directly and generally applicable to education 

(Bruer, 2002), although they should bear such fruit in the coming decades.

In the commercial sector, meanwhile, educational content producers, consultants, 

journalists, and marketers have identified neuroscience as a powerful tool for exciting 

public interest and selling products. Unfortunately, this commercial wing of the 

movement—where claims about neuroscience and education regularly overreach the 

scientific evidence by a wide margin—is by far the most visible to educators and the 

general public.

It is instructive to examine the kinds of claims being made in this area to identify 

common problems and to avoid repeating past mistakes. In my experience, most of the 

dubious claims being made about educational applications of neuroscience exhibit one or 

more of the following three common patterns of fallacious reasoning (Figure 1.2): ad hoc 

inference (“jumping to conclusions”), post hoc justification (“making the data fit the
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Figure 1.2: Three patterns of fallacious reasoning common in the educational neuroscience domain (with examples)

a) A d hoc inference or “jumping to 
conclusions”
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theory”), and/or construing correlation as causation (for example, assuming that similar 

behavioral patterns must be manifestations of the same underlying neural mechanism).

In cases involving ad hoc inference (Figure 1.2a), the neuroscience fact is primary 

(e.g., “the brain hemispheres are functionally asymmetrical”) and the speculative 

educational implications are meant to follow from it (“e.g., perhaps it would be effective 

to design separate curricula to exercise the right and left hemispheres individually”). 

When a neuroscientist or journalist does the speculating, the motivation is often to lend 

the basic neuroscience research an aura of relevance by trading on the universal and 

immediate appeal of educational applications. When an educator does the speculating, 

the motivation is typically to identify novel, “scientifically grounded” educational design 

principles. The problem is that these speculations amount to raw educational hypotheses 

that are—at best—a starting point for investigation and that are in any event usually no 

better than blind trial-and-error search. For example, it is equally plausible to reason 

from brain asymmetry that perhaps it would be effective to design curricula to foster 

integration of the asymmetrical functions by exercising them in parallel rather than 

exercising them individually. The raw fact of asymmetry provides no information about 

what educational actions might be appropriate. These speculations are starting points for 

investigation, not final blueprints for educational policy, practice, or design.

Cases of post hoc justification (Figure 1.2b) almost always involve an educational 

researcher, practitioner, or publisher starting with a firmly held value and/or belief about 

education (e.g., “learning should be fun and stress-free”) and trying to validate it by 

selectively arranging evidence from the scientific literature (e.g., “the brain’s response to 

stress is to narrow its focus”) that seems to lead to a prescription in line with the original
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belief (e.g., “since the goal of education is to broaden the mind and stress has a narrowing 

effect, we should therefore seek to make learning fun and stress-free”). The problem is 

that the evidence can be arranged selectively to tell any story one chooses. For example, 

starting with the raw fact that stress narrows focus, one could just as easily hypothesize 

that stress can be used to advantage in educational design. Indeed, the military uses 

stress very effectively as a central component of its training methods. Similarly, fear- 

based advertising leverages the narrowing effect of stress to focus consumers’ attention 

on an undesirable possibility and shape their behavior by convincing them that 

purchasing a particular product will prevent that outcome. While many people might 

agree that such methods are inappropriate in secondary education, neuroscience offers no 

support for the view that stress has no educative value (and indeed would probably 

provide stronger support for the opposite view).

In situations where correlation is construed as causation (Figure 1.2c), a neural 

mechanism (e.g., synaptogenesis, or the brain’s rapid production of synapses in the early 

years of life, followed by massive synaptic pruning) and a pattern of behavior (e.g., 

children learn rapidly in the early years of life, whereas the elderly often exhibit mild to 

severe cognitive decline) are observed to correlate. On this basis a general educational 

principle or prescription is extrapolated (e.g., “learning is at its peak at the beginning of 

life and declines thereafter with age, so expose children to as much as possible as early as 

possible” or, more prosaically, “use it or lose it!”).

Such arguments are often reinforced through reference to compelling causal 

animal models. For example, animal research has established the existence of a critical 

period in the development of the cat visual system (Wiesel & Hubei, 1965). A cat
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deprived of visual input early in life never develops normal vision, even if the animal 

suffers no permanent physical damage and later gets normal visual input. In the human 

sphere, it has been observed that young children seem to have greater facility learning 

second languages than do their adult counterparts (Johnson & Newport, 1989; Lenneberg, 

1967). The difference between children and adults is particularly obvious with regard to 

phonemic awareness and accents, which children seem to acquire readily but many adults 

learning a second language never fully master. The correlation between a pattern of cat 

behavior (i.e., a critical period for visual development) and a pattern of human behavior 

sharing a similar time course (e.g., young children’s apparent greater facility with 

language acquisition, plus a critical period for readily acquiring accents) has led people to 

conclude that the same neural mechanism causes both sets of behavioral results. From 

there it is a short hop to propose that children should be exposed to foreign languages (or 

any content, for that matter) as early as possible, or risk losing the ability to fully master 

them forever.

This argument might seem, on the face of it, to employ more sound reasoning 

than in the previous two cases. The weighty inferences from cat physiology to human 

physiology and from a sensory function (visual processing) to a higher cognitive function 

(language) are based, however, entirely on superficial correlations between visual 

behavior in cats and linguistic behavior in people. Despite appearances, the critical 

inference in this argument is not well supported and is quite dubious. Indeed, some 

evidence suggests that adults can learn second languages as easily as or more easily than 

children can when one controls for the immersive learning environment in which children 

typically learn language (Abu-Rabia & Kehat, 2004; Marinova-Todd, Marshall, & Snow,
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2000, 2001; Snow, 1983, 1992, 2002; Snow & Hoefnagel-Hohle, 1977, 1978a, 1978b, 

1979). This case illustrates why rigorous methods and standards are needed in applying 

theory to educational design and practice. Only in this way can we avoid costly decisions 

based on enticing but ill-supported notions that later turn out to be wrong—whether 

informed by neuroscience, cognitive psychology, intuition, or any other source.

Lessons Learned: General Criteria for a Rigorous 
Educational Neuroscience Framework

The negative examples just reviewed illuminate issues that must either be avoided 

or faced head-on by a rigorous neuroscience-education research framework. One general 

insight is that people get into trouble when they make the mistake of attempting to jump 

directly from neuroscience facts to educational prescriptions or vice versa (Figure 1.3a). 

In my view, there are at least three major problems associated with this practice that must 

be avoided.

The first problem is that direct inference from a neuroscience fact to an 

educational application conflates two qualitatively different steps: description and 

prescription (Figure 1.3b). Theories of how a system such as the brain operates internally 

(basic descriptive or explanatory theories) are logically distinct from theories specifying 

how the operation of that system might be manipulated through external means (applied 

theories o f intervention). In other words, understanding how the brain produces a 

specific behavior is necessary but not sufficient for determining how specific educational 

interventions will interact with the brain to systematically change that behavior. In other 

words, the entire neuroscience-education circuit involves two sets of causal relationships: 

a) the relationships between specific neural mechanisms and the observable behaviors
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Figure 1.3: Three problems with attempts to jump directly from neuroscience facts to educational prescriptions

a) Neuroscience-education claims often jump from a neurological fact to an educational prescription (or vice versa), but...
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they produce, and b) the relationships between specific educational actions (designs, 

methods, interventions, etc.) and the neurological changes they induce—which ultimately 

result in changed behavior. Despite the efforts of many people who try to collapse these 

two considerations into one step (recall, for example, Figures 1.2a and 1.2b), these two 

steps require independent investigation and systematic validation.

The second problem becomes apparent once the brain-behavior relationship is 

distinguished from the educational intervention. The problem stems from the assumption 

that educational prescriptions can be derived from raw neuroscience facts, even though 

bald facts about the brain (for example, the fact of hemispheric functional asymmetry) 

generally do not provide information about appropriate educational actions (for instance, 

whether to exercise the hemispheres separately or together). Without a model of the 

behavioral changes that would result in each case, the brain data themselves are mute 

regarding an appropriate course of educational action. For this reason, I would argue that 

a more appropriate basis for educational applications is the relationship between a neural 

mechanism and the pattern of behavior it causes, because this relationship provides much 

more insight concerning the educational actions that are likely to produce desired 

behavioral effects (Figure 1.3c).

The third problem pertains to the validity and credibility of a given claim about 

neuroscience and education. It is not enough simply to state that neuroscience supports a 

particular educational design. Introducing neuroscience into the process of educational 

design is entirely gratuitous unless it can be shown how the behavioral implications 

follow systematically from the neuroscience facts. Drawing ad hoc inferences about 

behavior directly from facts about the brain basically circumvents the entire chain of
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reasoning that would constitute a sound and valid scientific argument. The serious 

investigation of causal brain-behavior links that could provide a grounded basis for 

educational practice will require much more rigorous methods than those used in the 

examples just described (Figure 1.3d).

Ultimately, it would be useful to conduct basic research to investigate how 

educational interventions interact with neural mechanisms to do their work (that is, to 

produce a detailed theory of the full pathway in Figure 1.4a). In the meantime, however, 

a more expedient approach to validation should be possible when the educational goal is 

practical (e.g., to produce specific behavioral educational outcomes) rather than 

theoretical. Once a neural-behavioral mechanism has been identified and used to inform 

educational designs, in general it should be possible to evaluate the resulting educational 

designs using well-established, purely behavioral methods. In effect, the entire pathway 

from educational intervention through neural mechanisms to observable behavior (Figure 

1.4a) is evaluated all at once by testing the predicted behavioral outcomes produced at the 

final step (Figure 1.4b). If an intervention produces the expected behavioral outcome, 

then the applied educational goal is achieved, and further research at the neural level is 

unnecessary. If the expected effects are absent, then further investigation of neural 

mechanisms might be warranted to refine the neural-behavioral theory in order to 

improve the educational design. The behavior-level evaluation of outcomes is likely to 

be faster and more straightforward than building a detailed neural theory in any particular 

case. As such, behavioral evaluation methods provide a critical component of an 

efficient strategy for moving toward rigorously generated usable knowledge in
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Figure 1.4: Theoretical vs. applied strategies for validating educational interventions
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neuroscience and education relatively quickly, without having to wait for scientists to 

work out every theoretical detail of the physical processes involved.

Proposal for a Minimal Educational Neuroscience 
Research Framework

Based on the preceding analysis, I submit the framework depicted in Figure 1.5 as 

a minimal framework for conducting rigorous scientific research in the domain of 

neuroscience and education (hereafter referred to as “educational neuroscience”). In this 

paradigm, the process of applying neuroscience to education involves three major steps:

1) Characterize causal brain-behavior relationships

2) Identify educationally relevant implications from step #1 and use these to inform 

the design of educational materials, methods, experiences, and/or environments

3) Validate the designs in step #2 using standard behavioral methods (e.g., 

experimentally controlled outcome studies)

The third step in this framework (evaluating educational designs) involves well- 

established behavioral methods; accordingly, I do not discuss it further in this 

dissertation. The particular educational principles that can be extracted in the second step 

depend on the details of the brain-behavior link(s) identified in the first step in any 

specific case. I demonstrate how this can be done using a concrete case study. My 

proposal for identifying, characterizing, and validating potentially useful brain-behavior 

relationships (step #1) is the most novel and by far the most challenging part of this 

process, so I focus in this dissertation primarily on identifying and addressing the 

obstacles that arise in connection with executing it. In the next section, I describe this 

part of the educational neuroscience framework in more detail.
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Figure 1.5: A minimal framework for conducting rigorous applied research in 
educational neuroscience
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A Scientific Method for Basic Research on Brain-Behavior 
Relationships

Scientific research in any domain typically involves a number of steps: 

observation of a phenomenon (e.g., bricks fall faster than feathers), generating a question 

(“does the weight of an object determine how fast it will fall?”), hypothesizing an answer 

to the question (“an object falls at a rate proportional to its weight”), predicting the 

outcome of an experiment based on the hypothesis (“if I drop a two ounce weight, a one 

ounce weight, and a one ounce feather from the same height, the larger weight should hit 

the ground in half the time of the smaller weight and the feather, which should land 

together”), conducting the experiment (drop the three objects from a high window and 

observe that the two weights land together and the feather lands much later), and a 

decision about the likely veracity of the hypothesis based on the evidence (in this case, 

the evidence would be inconsistent with the hypothesis and the hypothesis would 

probably be rejected, or at least deemed highly unlikely).

A special challenge inherent in any attempt to identify causal brain-behavior links 

is the problem of bridging the very different temporal, spatial, and organization scales 

separating neurons and synapses on the one hand from complex patterns of behavior on 

the other. I argue that this can be accomplished through the use of computational models 

(such as artificial neural networks or dynamical systems models) that can embody neural 

mechanisms and generate behavior-level patterns of activity. Specifically, I propose the 

method outlined in Table 1.1, adapted from the general scientific method, for conducting 

research on causal brain-behavior relationships (see also Figure 1.6).
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Table 1.1: A scientific method for conducting brain-behavior research using computational models

Observation: Identify a potentially interesting neural property, mechanism, etc.

Model: Specify a computational model (such as an artificial neural network, a 
dynamical systems model, or a production system) that embodies the crucial features of 
the neural property or mechanism under consideration. Also identify one or more 
patterns of model behavior that are caused by the modeled neural mechanism.

Question: Specify a question linking the neurological properties to behavior or linking 
properties of the model to characteristics of people. For example:

• Is the type of mechanism represented in the model actually present in the human 
nervous system?

• Does the neural mechanism have the same behavioral consequences in people 
that it does in the model?

Hypothesis: Depending on the observation and question in a particular case, specify an 
appropriate hypothesis. For instance:

• The same mechanism represented in the model is present in the human nervous 
system.

• The specified neural mechanism causes patterns of behavior in people 
analogous to the behavioral patterns observed in the model.

Prediction: Use the computational model to generate testable behavioral predictions 
about human learning and cognition that are causally related to the specific neural 
property or mechanism under study.

NB: The computational model must be handled carefully in this framework, because 
there are many model properties and behaviors that are merely artifacts of the model 
and thus have no bearing on human cognition or behavior. For the purposes of this 
framework, model properties and behaviors can be separated into two categories. The 
first category is comprised of all the model properties that are identified with the neural 
mechanism under study and all the model behaviors that it causes. The second category 
contains everything else, including potentially valid predictions of the model that are 
not being studied at the time as well as model artifacts, etc.

Experiment: Test the behavioral predictions using empirical behavioral data from 
people.

Decision: Decide whether to reject or revise the hypothesis based on whether the 
experimental evidence from people is consistent with the model predictions or not.
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Figure 1.6: A general framework for conducting basic brain-behavior 
research, based on the scientific method (step #1 in Figure 1.5)
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The computational model is crucial in this framework for linking neural 

mechanisms to behavioral implications. My suggestion is that the computational model 

should be constructed so that it embodies the neural mechanism identified in the 

observation step, but also in such a way that it can generate behavior-level predictions 

that follow from the embedded neural mechanism. The brain-behavior link is established 

in this manner. Rigor is maximized by considering only those model properties that 

correspond with the neural properties under investigation and on model behaviors that 

they cause (Figure 1.7). Model validity is tested formally using quantitative methods and 

empirical data.

The validation strategy outlined in Table 1.1 is based on the scientific principle of 

falsification. Ideally, the falsification step is executed using quantitative methods to 

conduct formal hypothesis tests of a priori behavioral predictions, and the results of such 

tests have implications for the entire modeling framework instead of just the specific 

model being tested. This feature distinguishes the current approach from most other 

applications of computational models. Typically, these models are used to provide 

proofs-by-example or other positive demonstrations that a particular computational 

modeling framework is sufficiently powerful to generate a specific set of data.

Using computational models as a tool for investigating brain-behavior links in this 

manner in principle addresses the problem of establishing causal relationships across the 

very different levels of analysis involved, but this proposal raises three new questions:

1) What is the theoretical status of computational models (for example, ANNs)?

That is, how should we understand the models as theories o f neural and

psychological function and observable behavior?
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Figure 1.7: Computational models require careful interpretation. The neural 
mechanism and the computational model of it each have a “cone of implications.” 
Some properties of the neurology are not included in the computational model 
(“neural properties not modeled”), and some model properties are artifacts of the 
model instead of implications of the neural mechanism embedded in it (“model 
artifacts”). The overlap of these two cones defines the space of valid possibilities for 
making inferences from model behavior back to the biological system (cross-hatched 
area where the two cones overlap).
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2) How can we identify model properties and behaviors that represent a basis for 

valid inferences to humans (given model artifacts, model incompleteness, etc.)?

3) How can we verify the models against empirical data on human subjects?

My efforts to answers these questions constitute the bulk of work in this

dissertation. In part, this is because to my knowledge none of them has previously been 

answered in a way that provides both an analytic or theoretical justification and a 

blueprint for operationalizing them in practice (e.g., for identifying educationally relevant 

neural mechanisms, designing experiments, drawing out educational principles, etc.). I 

therefore had to develop new analytic and experimental tools (and/or adapt existing ones 

to this novel domain) suitable for addressing these questions.

Applying the Brain-Behavior Research Method: A Case Study
The general research method described in the previous section can be 

particularized in many different ways (for example, using a variety of different 

computational models, generating a range of predictions, using a number of appropriate 

experimental paradigms and analytic tools, etc.). In addition to developing a set of 

general tools, in this dissertation I also work through a concrete case study to demonstrate 

one way that this entire process can be carried out (see Table 1.2 and Figure 1.8).

In parallel with this basic research process (since many such experiments will 

generally be necessary to establish a particular brain-behavior relationship), educational 

implications of the neural mechanism and its behavioral consequences can be deduced 

and applied to educational designs, which can then be evaluated independently using 

standard behavioral methods.
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Table 1.2: A case study demonstrating the application of the brain-behavior research framework

Observation: Drawing on findings from wet neuroscience, I first isolate a mechanistic 
principle that seems to be fundamental to the way biological neural networks represent 
and process information. That is, these systems employ two different types of 
distributed representations (synaptic weights and patterns of spreading activation) that 
are not copies of one another but contain different information (as distinguished from 
representing the same information in different formats). The special way these two 
sets of non-equivalent distributed representations are coordinated in a neural network 
is what underlies many of their interesting properties (for example, graceful 
degradation, spontaneous generalization, and content-addressable memory). I refer to 
this as the mechanism of “Coordinated, Non-equivalent, Distributed Representations” 
(or CNDR for short).

Model: Many (if not all) artificial neural network models (ANNs) already embody the 
CNDR mechanism, so in this case I can simply select one of these rather than 
constructing my own. I choose the connectionist model (or multi-layer perceptron) 
since it has been extensively studied and is often used to model behavioral tasks.

Question: Does the human nervous system employ a CNDR mechanism like the one 
represented in a multi-layer perceptron (or connectionist ANN)?

Hypothesis: The human brain uses a CNDR mechanism with the same general 
properties as that represented in the ANN for learning novel categories.

Predictions: I designed a category learning task and trained the ANN on it. Based on 
an analysis of the ANN behavior during and after learning, I generated two 
quantitative behavior-level predictions:

a. People’s reaction times should decrease curvilinearly with stimulus distance 
from the category boundary (in stimulus feature space).

b. As learning progresses, people’s perceptual judgments of similarity should 
change systematically as a function of the categories being learned.

Experiment: I designed an analogous version of the category learning task to 
administer to human subjects in an experimental setting. I identified multi-level 
regression modeling as a statistical method that could be used to test the two ANN 
predictions quantitatively using empirical data on human learning.

Decision: The experimental findings are consistent with the hypothesis that human 
learning and internal organization of novel categories rely on a CNDR neural 
mechanism like the one represented in the connectionist ANN.
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Figure 1.8: Example of an application of the proposed method to investigate a 
specific causal brain-behavior relationship
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Organization of the Dissertation
The rest of this dissertation is organized as a set of four papers describing general 

tools for addressing key problems in this domain and demonstrating how those tools and 

the research framework described in this introduction can be applied in a concrete case o f 

educational neuroscience research.

In the first paper (Chapter 2), I develop an analytic framework enabling the 

uniform comparison of disparate psychological models, theories, and paradigms. I apply 

this framework to compare and contrast four psychological and behavioral models: 1) the 

behaviorist stimulus-response model, 2) the perceptron neural network, 3) the cognitivist 

production system (as an exemplar of the symbolic paradigm), and 4) the multi-layer 

perceptron (MLP) neural network. Through this analysis, I identify a specific neural 

mechanism worthy of study (the mechanism of coordinated, non-equivalent, distributed 

representations, or CNDR for short) and justify my use of a multi-layer perceptron to 

generate behavioral predictions from the CNDR neural mechanism.

In the second paper (Chapter 3), I describe behavior-level patterns resulting from 

the CNDR mechanism as embodied in an MLP neural network model, and I propose an 

experimental paradigm and an application of multi-level regression modeling to test the 

validity of this hypothesized brain-behavior relationship in people. I also report on the 

results of conducting the experiment. Together, the first two papers elaborate on, justify, 

and demonstrate the application o f  the general brain-behavior research framework 

described in the previous section (which constitutes “step 1” in the educational 

neuroscience framework of Figure 1.5).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

25

In the third and fourth papers, I discuss potential educational implications of the 

findings from the first two papers (“step 2” in the neural-educational research framework 

of Figure 1.5). In particular, in the third paper (Chapter 4) I argue that different 

assumptions about the brain lead to conflicting behavior-level models of educationally 

relevant phenomena such as knowledge transfer. In other words, not all possible theories 

of transfer are compatible with brain mechanisms, and educators seeking to design 

educational materials and experiences to foster transfer need to build on a theory that is.

In the fourth paper (Chapter 5), I apply the analytical framework from the first 

paper to re-evaluate the position on neuroscience and education Bruer (1997) defines in 

“Education and the Brain: A Bridge Too Far.” In addition, I define a different position on 

the issue, based on the observation that there is more than one possible bridge from 

neuroscience to education (e.g., the bridge described in this dissertation is distinct from 

the one Bruer describes), not all of which are equally far.

In the concluding chapter (Chapter 6), I place my research framework in the 

larger context of the emerging domain of educational neuroscience. Specifically, I argue 

that educational neuroscience does not have the structure of a formal discipline (like 

physics or mechanical engineering, for example), and therefore some other kind of 

theoretical infrastrcture is needed to faciltate work in the domain. I propose design 

patterns as a promising tool for addressing this problem. Design patterns are formal 

abstractions of successful solutions to recurring problems that have proven very useful in 

non-disciplinary domains such as architecture and software engineering. I also describe 

(and illustrate with several examples) how design patterns can be applied in educational 

neuroscience specifically.
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To illustrate how each step of the research process can be executed and each tool 

applied, I work through a concrete example, starting with identification of a neural 

mechanism (CNDR) and carrying the analysis all the way through extraction of candidate 

educational principles. My intent is that this strategy of developing the general 

framework in parallel with a concrete applied case study serves multiple purposes: 1) it 

illustrates how each step of the research process connects with those that precede and 

follow it, 2) it demonstrates how the theoretical and analytical tools are applied to 

concrete questions and problems, 3) the entire case study represents a proof-of-concept 

that the neural-educational bridge can be crossed immediately, based on our current state 

of scientific knowledge, and 4) it provides a concrete case study of the complete research 

framework that potentially could be used as a pedagogical tool (for instance, to illustrate 

specific issues unique to this domain).
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Chapter 2 

Theoretical Framework: On the Relationship 
between Psychological Theories and 
Computational Models

Introduction
Fifty years ago, psychologists and computer scientists collaboratively invented a 

powerful framework for studying human psychology and behavior called the symbolic 

paradigm (Fodor, 1975, 1987, 1990; Gardner, 1985; Newell, 1980; Newell & Simon, 

1976; Pylyshyn, 1986; Smolensky, 1988). This paradigm is based on the premise that the 

mind is fundamentally a symbol processing system, and that psychological research 

should therefore focus on characterizing its constitutive processes and how the symbolic 

data flowing through the system are transformed by them (for example, while solving 

problems). Researchers within this camp introduced the innovation of specifying 

psychological theories in terms of detailed data structures and algorithms that could 

(optionally) be loaded into a computer to simulate the psychological and behavioral 

processes entailed by the theory-program. For example, a cognitive model of problem 

solving in the game of chess could be specified as a computer program capable of playing 

chess using strategies gleaned from analyzing the behavior of human chess masters 

(Alden & Bramer, 1988; Bramer, 1982; Chamess, 1992; Chase & Simon, 1988; 

Feigenbaum & Feldman, 1995). An early demonstration of the power of the symbolic 

paradigm was its central role in dislodging behaviorism as the dominant theoretical 

approach to studying human psychology and behavior (Chomsky, 1959; Gardner, 1985).
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At around the same time, a competing computational framework based on a 

simple neural model called the “perceptron” emerged (Anderson & Rosenfeld, 1998; 

Gardner, 1985; Rosenblatt, 1958). Symbolic paradigm proponents eventually disposed of 

the perceptron as a viable basis for psychology using analytic methods (such as proof-by- 

counterexample) similar to those employed so effectively against behaviorism (Anderson 

& Rosenfeld, 1998; Gardner, 1985; Minsky & Papert, 1969). These dramatic dual 

demonstrations—against a purely behavioral paradigm in the first case and an ostensibly 

neural paradigm in the second—helped establish the symbolic paradigm specifically and 

cognitive science more generally as the dominant frameworks for studying psychology 

and behavior through the present day. This work also helped establish the “mind” as the 

predominant unit of analysis in psychological study.

About twenty years ago, researchers introduced a descendent of the original 

perceptron called the “multi-layer perceptron” (MLP)—also sometimes called the 

“connectionist model” (Anderson & Rosenfeld, 1998; Gardner, 1985; McClelland & 

Rumelhart, 1986; Rumelhart & McClelland, 1986). The MLP is superficially quite 

similar to the perceptron. The crucial difference is that the MLP overcomes the 

fundamental limitations that made the perceptron inadequate as a model of human 

cognition (Rumelhart, Hinton, & Williams, 1986; Widrow & Lehr, 1990). Smolensky 

(1988) has dubbed the psychological research framework based on these ANNs the 

subsymbolicparadigm to distinguish it from the symbolic paradigm. A key distinction 

between the two paradigms involves the theoretical role each accords to symbols. In the 

symbolic paradigm, the symbol is the fundamental unit of analysis. In the subsymbolic 

paradigm, in contrast, symbolic descriptions of cognitive structures and processes are
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merely approximate discrete descriptions of a continuous underlying conceptual space 

(Smolensky, 1988).

In the last two decades the MLP and other kinds of artificial neural networks (or 

ANNs) have grown to challenge the symbolic paradigm as a framework for describing 

and investigating human cognition, although the precise nature and severity of that 

challenge have long been matters of debate (Elman, 1998; Smolensky, 1988). At one 

pole of the debate, some ANN proponents argue that these models represent a Kuhnian 

paradigm shift that could ultimately displace or absorb the symbolic paradigm 

(Churchland, 1981; Churchland, 1988; Granott, 1998; Lust, 2000; Schneider, 1987). At 

the other end of the spectrum, some members of the symbolic camp insist that ANNs 

simply offer an alternate implementation mechanism for their more abstract models, 

which has no direct bearing on the abstract symbolic models themselves (Broadbent,

1985; Fodor & Pylyshyn, 1988)—for example, in the way that statistical mechanics in 

physics is true at the “implementation” level but largely irrelevant when we are dealing 

with the Newtonian systems of structural engineering and everyday life (Smolensky, 

1988). Based on the observation that many ANN strengths (e.g., perception, 

categorization) are weaknesses of symbolic models and vice-versa (e.g., symbolic models 

perform better on higher-order symbolic tasks like language and math), a third group has 

proposed “hybrid” models that integrate the two kinds of systems in an effort to leverage 

the capabilities of both in a single system (Just & Varma, 2002; Klahr & MacWhinney, 

1998; Ohlsson, 2000; Sun, 1996; Tepper, Powell, & Palmer-Brown, 2002;

Triantaphyllou, 2000; Wermter & Panchev, 2002).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

30

In my view, progress in resolving this debate is hampered by the lack of an 

appropriate analytical framework for comparing and contrasting different psychological 

theories and models that respects the unique internal perspective of each paradigm while 

at the same time rendering them comparable via correlation with a shared external field 

of reference. For instance, the symbolic and subsymbolic paradigms are not directly 

comparable as they stand, because they are based on different assumptions, involve 

different units of analysis, employ different theoretical constructs, and are grounded in 

different frames of reference. Some kind of uniform code is needed into which they can 

both be translated for direct comparison to understand their similarities, differences, and 

unique characteristics.

I have three aims in this paper. First, I propose a meta-theoretical analytical 

framework that can be used to compare and contrast different psychological theories from 

the uniform perspective of philosophical materialism. Second, I apply this framework to 

map out the relationships between behaviorism, the perceptron, the symbolic paradigm, 

and the muli-layer perceptron to demonstrate the application and utility of my proposed 

framework. Third, I build on this inter-theoretical analysis to argue that the symbolic 

paradigm (grounded in a functionalist framework) entails at least two mutually exclusive 

materialist hypotheses about the nature of human cognition; these hypotheses cannot in 

principle be distinguished within the symbolic paradigm because of the strongly 

functionalist orientation of that paradigm; and the symbolic paradigm therefore lacks 

sufficient falsifiability to be considered scientific. I further argue that artificial neural 

networks (of which MLPs are just one example) represent an important advance over the 

symbolic paradigm because they commit to just one of these hypotheses, thereby

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

31

potentially exposing them to falsifiability in ways that make them more scientific than the 

symbolic paradigm as it is usually construed1.

Analytic Framework
One difficulty arising in any attempt to compare and contrast different 

psychological theories is that each one seeks to parse the world in a different way.

Indeed, the chief innovation of a new theoretical framework is often a novel unit of 

analysis and/or a different way of “cutting nature at its joints” to identify the boundaries 

of the entities under study. Piaget, for example, focused on the “epistemic subject” in his 

developmental theory (Gruber & Voneche, 1995), while Vygotsky (1986) took “word 

meaning” as his unit of analysis. Gardner (1993) identifies the external “domain” and the 

internal “intelligence” as meaningful units of analysis in his theory of multiple 

intelligences, whereas Fischer and Bidell (1998) make a different cut through some of the 

same phenomena in specifying the “skill” (which includes elements of both a person’s 

internal ability and the external domain-specific task) and the “person-in-contexf ’ as 

theoretical primitives in their skill theory framework.

To complicate matters further, theories can differ along a large number of 

dimensions, including a priori assumptions, philosophical orientation (for example, 

materialist vs. idealist vs. dualist), methods employed, source and type of data used for 

empirical verification (and indeed whether empirical verification is even a consideration), 

level of analysis, granularity of description, phenomena of interest, etc. Even if we had 

adequate methods for adjudicating experimentally between the many theoretical 

proposals (which we do not, by and large), we would still first need to impose a lingua

1 In Chapter 3 I describe my efforts to operationalize this potential for falsifiability in the form o f an 
empirical experiment.
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franca on this Tower of Babel tableau so we can at the very least determine when two 

parties are referencing the same entity in the world and when they are not.

Philosophical Materialism
In seeking to establish a common frame of reference for inter-theoretic analysis, I

have found it useful to draw on the taxonomic system described by philosophers of 

science to organize different types of psychological theories (see Figure 2.1 for my take 

on this organization; also, see Churchland (1988) for a more thorough and very accessible 

treatment of these issues). At the leaves of the tree, there are many different specific 

models of psychology and behavior, including stimulus-response models, production 

system models, perceptron models, and MLP models. These can be grouped together 

under theoretical paradigms such as behaviorism, the symbolic paradigm, and the 

subsymbolic paradigm, as shown in Figure 2.1. A paradigm (loosely speaking) is defined 

by a set of assumptions, principles, and/or methods common to all the models that derive 

from it (Kuhn, 1996). Note that a paradigm can include multiple distinct kinds of 

specific models, as in the case of perceptrons and MLPs, both of which derive from the 

subsymbolic paradigm.

In the case of psychological theories, these paradigms can be grouped further into 

philosophical camps that cohere around a set of beliefs concerning how the brain-mind 

relationship should be handled theoretically. Philosophical behaviorism is based on the 

belief that mind and brain can and should be ignored for the purposes of developing a 

theory of human behavior (Churchland, 1988; Graham, 2002; Ryle, 1949; Watson, 1913). 

Functionalism entails the assumption that the mind can be studied independently of the 

brain (that is, that the brain can be ignored in developing a theory of human cognition—
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Figure 2.1: Partial taxonomy of psychological models and paradigms grounded in philosophical materialism. This taxonomy 
explicitly excludes, for example, psychological paradigms, theories, and models derived from philosophical idealism or dualism.

(^Subsym bolic  ParadigmBehaviorism Etc. Etc.Etc.

Stimulus Response 
Model

Percentron MLP Etc.Production
System

Etc. Etc.

Dualism

Philosophical
Behaviorism

Functionalism Eliminative
Materialism

Materialism

U>
U )



www.manaraa.com

34

Churchland, 1988; Levin, 2004; Putnam, 1975). Eliminative materialism holds that once 

a brain-level (or implementation-level) theory of cognitive processes is established, 

extant mind-level theories can be (and indeed will likely need to be) abandoned because 

they paint a “radically misleading” picture of cognitive functioning2 (Churchland, 1981; 

Churchland, 1988; Churchland, 1986; Ramsey, 2003).

Finally, what all of these philosophical camps have in common is a shared basis 

in philosophical materialism. That is, most practicing scientists in these camps subscribe 

to the belief that behavioral and mental phenomena somehow ultimately derive from 

physical, chemical, and biological structures and processes located entirely in the body, 

and primarily in the nervous system (Churchland, 1988; Gardner, 1985). If these 

structures and processes were all accounted for, in other words, there would be no 

“residue” left over. The implication is that we do not need to include any additional 

factors—for example, ESP, magic, the soul, or a nonmaterial substance of mind such as 

that proposed by Descartes (1641/1960)—to explain cognitive phenomena. Materialism 

is differentiated in this way from dualism or idealism, for example, which allow for 

nonmaterial entities to influence the brain-mind system (and, by extension, behavior).

The fact that all the theories under consideration in this paper are ultimately grounded in 

materialism suggests this as a promising point of departure for establishing a shared 

frame of reference, as I discuss in the next section.

2 Although psychological behaviorism would seem to imply a commitment to philosophical behaviorism 
and the mainstream symbolist philosophy is functionalist, I do not mean to suggest that all researchers 
working with ANNs are necessarily eliminative materialists. Figure 2.1 is meant to illustrate four points: 1) 
there is a great diversity o f extant psychological models, theories, and paradigms; 2) these frameworks tend 
to cluster into larger groups as you move up the tree; 3) the common ground shared by many o f these 
diverse frameworks is a belief that the brain somehow gives rise to the mind (philosophical materialism); 
and 4) in the present analysis I am interested only in models, theories, paradigms, and camps that are 
grounded in this materialist view (this excludes, for example, theories grounded in idealist and dualist 
philosophies).
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Criteria for the Shared Analytic Framework
Materialism provides a starting point for my general analytic framework for 

understanding relationships between psychological theories in two ways. First, 

materialism delineates unambiguously the boundaries of the system under study, and 

establishes the upper limit on what needs to be included in it. This includes the nervous 

system (and to a lesser extent the body housing it), with all of its physical, chemical, and 

biological structures and processes. The mind and behavior are in this view recognized 

as being in a meaningful sense redundant (although possibly indispensable) descriptions 

of the nervous system, arising as they do from these underlying entities. These two levels 

of analysis must nonetheless be included independently in the analytic framework to 

accommodate specific theories like behaviorism (which seeks to construct a theory on 

behavioral data alone, without reference to the mind or brain) and the symbolic paradigm 

(which assumes the mind can be described without specific reference to the details of the 

nervous system).

Second, materialism suggests a useful way to parse the system—in terms of the 

physical and measurable structures and processes at each level of analysis. That is, the 

behavioral level of analysis will be defined strictly in terms of measurable behavioral 

phenomena (stimuli and responses), the brain level of analysis will be defined strictly in 

terms of measurable physical brain structures like synapses, etc.

To these guiding principles derived from materialism, I add constraints based on 

the purposes for which I want to use the framework. I want to use this framework as an 

unambiguous frame of reference for understanding how different theories relate to one 

another. It seems prudent, therefore, to define the levels of analysis so that they facilitate 

“bookkeeping” of the theoretical constructs entailed by a psychological model or theory.
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For instance, a single theoretical construct (e.g., working memory) should not 

legitimately belong at two levels of analysis (for example, mind and brain), because then 

it would be “counted” twice3. This strategy will support unambiguous inferences and 

conclusions about the theories under consideration.

To summarize, in constructing my analytic framework, I sought to meet four

criteria:

1) Materialist Criterion: Elements at each level of analysis should be meaningfully 

identifiable with physical/measurable phenomena. For example, at the behavioral 

level, inputs can be identified with measurable stimuli (such as visual images, 

auditory prompts, or tactile inputs) and outputs can be identified with measurable 

responses (such as reaction time, categorical response, or eye blinks).

2) Uniqueness Criterion: The levels of analysis should be specified to minimize 

overlap between them. For example, if a raw sensory stimulus is accounted for at 

the behavioral level of analysis, then it should not also be included at the “mind” 

or “brain” level of analysis unless: a) there is some physical referent at the other 

level to which it can be attached, such as a neural representation (from criterion 

#1), and b) there is some account of the relationship between the two physical 

referents at different levels, such as a specification of the transformation from raw 

input to neural representation. This facilitates careful “bookkeeping” by making 

sure each theoretical construct is accounted for at most once.

3) Completeness Criterion: Levels of analysis should accommodate all significant 

phenomena relating to brain, mind, and behavior. This criterion facilitates

3 Although different parts o f  the working memory subsystem might be placed at different levels o f  analysis, 
the point is that no single entity should appear in more than one place.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

37

bookkeeping by making sure that each relevant theoretical construct can be 

accounted for at least once.

My focus on theoretical paradigms with a shared foundation in philosophical 

materialism helps to establish an upper bound on the phenomena that need to be 

accommodated in this framework to satisfy criterion #3. In addition, note that criteria #2 

and #3 taken together help to ensure that any theoretical construct will be accounted for 

exactly once in the analytic framework—to the best of my knowledge a unique feature of 

the current proposal. These first three criteria constitute a set of definitive requirements 

on the analytic framework. The final criterion is more heuristic, intended to guide 

general decision making (such as how many levels of analysis to include) and to facilitate 

the application of this analytic framework to diverse psychological models and 

paradigms:

4) Translation Criterion: When possible, use levels of analysis bearing some 

relation to other levels-of-analysis frameworks in wide use. For example, people 

often talk colloquially in terms of “brain,” “mind,” and “behavior”; cognitive 

scientists often rely on Marr’s “computation,” “representation,” and 

“implementation” levels of explanation (Marr, 1982; Posner, 1989); and others 

commonly use domains or disciplines like “education,” “cognitive psychology,” 

and “neuroscience” dealing with phenomena at different levels of organization as 

stand-ins for formal levels of analysis (see, for example, Bruer, 1997).

Defining the Levels of Analysis
In accordance with criterion #4, as a starting point for defining the three levels of

analysis, consider the colloquial terms “brain,” “mind,” and “behavior.” Behavior can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

38

defined simply as any directly observable and/or measurable externalized action 

(including such experimentally elicited responses as linguistic utterances, button presses, 

and eye movements), or any stimulus applied to the body that can be registered by the 

senses (such as pressure, temperature, pain, visual images, or sounds).

The word “brain” is most closely associated with the pinkish organ situated inside 

the skull—the complex structure composed of smaller structures like cells, synapses, and 

proteins.

As a first step, and in keeping with constraint #2 (non-overlapping levels of 

analysis), the mind can be defined in terms of the other two—roughly speaking, it is 

everything that comes “between” the physical organ of the brain and the externally 

observable behavior. That is, “mind” is an abstract category containing all the internal 

representations and processes not directly observable that enable behavior and that are 

ultimately instantiated physically in the brain.

These definitions of brain and mind raise a difficulty, however. The brain is most 

closely associated with the physical organ by that name, but the brain also has a 

functional aspect. Structures like cells, synapses, and neurotransmitters support the 

generation of activity patterns like neural action potentials (or “spikes”). In particular, 

when a neuron becomes sufficiently stimulated, it generates a series of action potentials 

called a “spike train” that encodes information. For example, a single neuron in the cat 

visual system might produce many spikes per second when the animal views a horizontal 

line but almost no spikes in response to a vertical line (Hubei, 1995). Collectively, many 

neurons sensitive to different stimulus features (color, line orientation, movement,
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brightness, etc.) encode information about the structure of the visual scene in the spike 

trains they produce.

In order to understand the difference between structures (such as synapses) and 

activity patterns (such as spike trains), imagine scientists could flash-ffeeze a fully 

functional human brain without damaging it, simultaneously cutting off its energy supply 

and blocking its sensory inputs so all activity would cease completely. All the 

components of the brain that can be observed while the brain is in this frozen, inactive 

state (including synapses, cells, and neurotransmitters) are structures. All the phenomena 

that existed while the brain was active but disappeared at the moment it was frozen 

(including action potentials and spike trains) are activity patterns.

Activity patterns like spike trains are measurable physical phenomena, and in that 

sense they should be considered part of the brain. However, these phenomena are 

information-carrying processes (or the products of processes), not independently stable 

material structures like cells, and therefore they also participate in the mind category. We 

can refer to these physical brain processes collectively as the “brain-mind” to distinguish 

this description of the mind from alternative descriptions derived from other sources of 

data, such as behavioral observation.

For my purposes, the distinction between physical entities like synapses and spike 

trains on the one hand and functional categories like “mind” and “behavior” on the other 

hand is as important as the distinction between the levels of analysis, so I introduce my 

own nomenclature to preserve both (see Figure 2.2). Instead of the functionally defined, 

ambiguous, and overlapping categories “brain” and “mind,” I introduce the materially 

grounded (constraint #1) and non-overlapping (constraint #2) categories “internal
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Figure 2.2: Levels of analysis defined

Instantiates

Brain

Physical Neural 
Processes

(e.g., Spike trains)

‘Brain-Mind’

Level of Analysis: Internal Structure
Closest Colloquial Term: Brain
Definition: Physical structures of the nervous system (including 
physical entities like synapses, cells, neurotransmitters, etc. but not 
functional elements like spike trains)

Level of Analysis: Internal Activity
Closest Colloquial Term: Mind 
Definition: A characterization of the internal 
representations and transformations (processes) 
instantiated in the physical (structural) nervous 
system that enable observable behavior

Level of Analysis: External Behavior (External Activity)
Closest Colloquial Term: Behavior
Definition: Any directly observable externalized action (including 
such experimentally elicited responses as linguistic utterances, button 
presses, eye movements, etc.); also, any externally applied stimulus
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structure” and “internal activity.” According to the materialist doctrine, any behavioral 

or cognitive structure or process must ultimately have its physical basis in either nervous 

activity or nervous structure, so this framework should in principle be able to 

accommodate virtually any theoretical construct grounded in a materialist paradigm.

This scheme therefore satisfies all four of my design constraints.

Previous Levels of Analysis Proposed for Analyzing Brain-Mind- 
Behavior Relationships

Before jumping into the analysis itself, let me mention briefly why I felt it

necessary to introduce a whole new framework rather than using one that has already 

been proposed formally or used informally in the past. The short answer is that no other 

analytic scheme with which I am familiar meets all four criteria laid out above, the need 

for each of which I have tried to justify explicitly. I will demonstrate with three familiar 

examples.

Most commonly, these issues are discussed informally in terms of “brain,”

“mind,” and “behavior”—this is certainly the usual way of discussing them in the popular 

press, for example. I described above how the “brain” and “mind” categories are 

overlapping (Figure 2.2 illustrates this), which violates design constraint #2 (uniqueness 

criterion).

Another common approach is to use disciplines to stand in for the three levels of 

analysis. For example, Bruer (1997) conducts an analysis of neuroscience and education 

using the following rough associations: neuroscience ~ brain, cognitive psychology ~ 

mind, education ~ behavior. The problem here is similar to that in the previous case. 

Specifically, “neuroscience” encompasses many different types of data, methods of 

analysis, and levels of organization, some of which encroach on the behavioral and/or
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mental planes. Cognitive neuroscience, for example, focuses on functional patterns of 

neural activity. Presumably, this neural activity overlaps with the physical referents 

behind cognitive psychological models of cognitive processes associated with specific 

behaviors. Therefore, cognitive neuroscience and cognitive psychology are not suitable 

as levels of analysis because they violate the uniqueness design constraint. Because 

many disciplines span multiple levels of analysis in this way, they would also violate 

design constraint #24. This scheme also violates constraint #3 (completeness criterion) 

because it is often difficult to reconcile data and methods from disciplines (like 

computational neuroscience) not included in a study with those that define the levels of 

analysis used there, which means there is no guarantee that all relevant phenomena can 

be accommodated by any specific set of disciplines. These inherent differences—which 

are, in many cases, incommensurabilities—are largely what define disciplinary 

boundaries in the first place and thus make disciplines a poor basis for defining levels of 

analysis.

The formal framework used most widely in the cognitive science literature is that 

proposed by Marr (1982). His three “levels of explanation” are called computational 

theory, representation and algorithm, and hardware implementation. I apply my 

framework to examine Marr’s framework in detail in a later section and to argue that it 

violates at least one of my criteria, which is why I felt the need to introduce a new 

framework rather than using his.

In summary, all of these popular schemes can be rejected based on the fact that 

they employ overlapping categories, which means that sometimes a single entity can be 

identified with more than one level, which makes it difficult to reason carefully about

4 In chapter 5 I examine this particular example in greater depth.
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theories (especially in relation to one another). In addition, ambiguous specification of 

the different levels of analysis in each scheme frequently makes it difficult to know 

where to place a phenomenon under study (for example, any example of brain activity 

itself-—should it be considered part of the brain or mind, or perhaps both?). My 

framework subsumes key features of all of these other schemes and replaces them with 

one uniform analytic framework grounded in physical structures and processes.

The Complete Analytic Framework
The levels of analysis form the core of the analytic framework, but by themselves

they are not sufficient for present purposes. In addition, we need some way to track the 

measurable information as it passes through and is transformed by the system, and to 

relate specific structures and processes appearing at different levels of analysis to each 

other. Therefore, I have added a number of elements to the core framework, as shown in 

Figure 2.3. These particular elements are added with the goal of preserving important 

within-level distinctions (for example, by differentiating external inputs and outputs from 

internal representations at each level) while also explicating cross-level mappings (for 

example, by specifying how a description of an externally applied stimulus relates to a 

description of the same stimulus in terms of a pattern of internal activity). These 

additional features facilitate careful bookkeeping of theoretical elements.

Wihin-Level Distinctions
Each level of analysis i has its own set of inputs (x,) and outputs (y). Each level 

of analysis also specifies a set of transformations from its inputs to its outputs, and the 

functions specifying this set of transformations for level i are specified collectively as Fj. 

In addition, each level can potentially store information as representations (Rj).
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Figure 2.3: The proposed analytic framework is based on three levels of 
analysis. Each level (/) is specified as a set of inputs (xj), outputs (yi), 
representations (R,), and functions (F j) . Relationships between levels i and j  are 
specified as mappings between the levels’ inputs ( M Xjj), the levels’ outputs ( M yjj), and 
the levels’ internal mechanisms (M y ).
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For example, an electric shock applied to a subject’s hand would be a behavior- 

level input ( x b ) .  If the subject flinches in response to the shock, the flinch would be 

identified as a behavior-level output (ye). A functional description of the relationship 

between the shock stimulus and the flinch response that makes no reference to internal 

representations would be a transformation identified as an element in the set of behavior- 

level input-output transformations (Fb). If the subject later makes an entry in his journal 

about the experience of being shocked, this written record would be identified as a 

behavior-level (or external) representation (Rb).

Cross-Level Mappings
Relationships between inputs at different levels are denoted by MXy, which stands

for “mapping between the inputs at levels i and j ” Similarly, relationships between 

outputs are denoted as M yjj. Relationships between the internal mechanisms at levels i 

and j  (especially between their internal representations and transformation functions) are 

denoted by M jj.

For example, imagine an experiment in which a monkey is shown a printed word 

(e.g., “cup,” “ball,” or “banana”) and is expected to point to the indicated object (a cup, 

ball, or banana, respectively) included in a set of objects before it. Imagine further that 

an array of microelectrodes has been implanted surgically in the visual centers of the 

monkey’s brain to record the spiking activity of one thousand individual neurons for the 

duration of the experiment. The behavior-level input (xB) in this scenario is a word (e.g., 

“cup”). When presented to the monkey, each word induces a unique pattern of neural 

activity as measured by the microelectrodes, and this pattern of neural activity 

corresponds to the input at the internal activity level (xa) in this scenario. A table
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specifying the correspondence between the printed words and their associated neural 

activity patterns would constitute the mapping (M) between inputs (x) at the behavioral 

(B) and activity (A) levels (Mxba)-

Integrated Framework and Analytical Strategy
To summarize, each level of analysis i is defined by a quadruple of elements (x„

y i, R j, F j), and relationships between any two adjacent levels i and j  are specified by three 

mappings (M jj, M * j,  M yjj). By contrast, other frameworks in this domain (such as those 

described above) tend to define the levels of analysis ambiguously and monolithically 

(that is, without differentiating the kinds of elements operating at each level). The goal 

here is to include enough detail in the framework to highlight significant differences 

between different models or theoretical paradigms while also suppressing unnecessary 

detail so as to illuminate meaningful similarities between them.

My approach involves mapping disparate theoretical frameworks onto this 

materialist framework so they can be compared in a uniform manner. In the following 

sections I describe in general terms how the framework can be applied. I then 

demonstrate this process concretely by applying it to behaviorism, the symbolic paradigm 

(using the production system as a concrete exemplar), perceptrons, and MLPs. The 

product of these four analyses will be the taxonomy previewed in Figure 2.4, which I use 

to compare and contrast the four different theoretical frameworks.

Intertheoretic Analysis
The application of the analytic framework to a specific theory or model involves 

four steps (although not necessarily applied in the order presented). First, identify any
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Figure 2.4: Taxonomic summary of the analyses of four psychological models:
a) behaviorist stimulus-response model, b) symbolic paradigm production system 
model, c) single-layer perceptron, and d) multi-layer perceptron (MLP).
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measurable data modeled or otherwise incorporated into the theory, and associate them 

with the (xj) and outputs (yO at the appropriate level of analysis. For example, external 

behavior would obviously appear as inputs and outputs at the top level (“B”), while 

single-cell neural recordings measure internal activity, so they would be identified with 

inputs and outputs at the middle level (“A”)5. Second, identify the functions (Fj) that 

transform inputs into outputs, and (usually) locate them at the same level of analysis as 

the inputs and outputs that they relate (but see the perceptron and MLP analyses for two 

examples where a basis function is at a different level from its inputs and outputs). For 

example, a behaviorist model relates external stimuli to external responses without 

reference to anything internal, so it would be identified as a set of functions at the 

behavioral level (Fb). Third, identify the representations stored at each level of analysis. 

Fourth, identify the mappings that relate previously identified elements located at 

different levels to one another. I demonstrate this procedure concretely in the following 

sections.

Behaviorism
Behaviorism is a psychological paradigm emphasizing externally observable (that 

is, behavioral) aspects of thought. Although there have been many strands of 

behaviorism (Graham, 2002; Hatfield, 2002), including some that have appealed to 

mentalistic or quasi-mentalistic entities such as internal “mediating” variables or 

processes (Berlyne, 1965; Graham, 2002; Hatfield, 2002; Osgood, 1953), a number of 

early behaviorists (most notably Skinner, with his self-styled “radical behaviorism”) 

sought to explain behavior entirely in terms of measurable behavioral responses to

5 In cases where a model is theoretically rather than empirically based, this information can be inferred 
from the description o f the elements the theory or model is intended to represent.
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measurable stimuli, without reference to internal mental states, neurological activity, or 

neurological structure (Graham, 2002; Skinner, 1938a, 1945; Watson, 1913). Many of 

these early behaviorist models were based on the stimulus-response framework of 

classical conditioning (Pavlov, 1927). Although it is straightforward in this case to locate 

the behaviorist stimulus-response model within my analytic framework directly (see 

Figure 2.5), for demonstrative purposes I now apply the four-step process described 

above to show how a theory can be mapped systematically onto the framework.

Step #1: Identify the data source upon which the model is based 
The basic structure of a stimulus-response model is:

Stimulus^Response

Alternatively, this can be written another way:

Response = F(Stimulus)

It is particularly easy to identify the source of relevant data in the case of behaviorism,

since by definition these theorists sought to base their theories entirely on measurable

behavioral stimuli (xb) and measurable behavioral responses (ye). Rewriting the equation

to reflect this yields:

y B =  Fj(xB)

Step #2: Identify the functions relating inputs to outputs
Since the only inputs and outputs are at the behavioral level of analysis, and the

behaviorists specifically sought to avoid reference to internal processes and structures,

the functions relating these inputs and outputs therefore also have to be at the behavioral

level (Fb):

y B =  F b(xb)
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Figure 2.5: A stimulus-response model from behaviorism represented in terms 
of my analytic framework
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Step #3: Identify any representations (other than inputs and outputs)
Because of the focus on behavior alone, we can remove everything below the first

level of analysis from the diagram. The only possible representations would therefore be

at the external/behavioral level (Rb). Behaviorism allows for no representations (as

distinct from input-output functions) other than the inputs and outputs, so we remove Rb

from the diagram.

Step #4: Identify the mappings between levels
There is only one level active in behaviorism, so there are no mappings between

levels.

The main focus of research and theory in radical behaviorism was on determining 

the nature of Fb(*)—that is, determining the contingencies between a set of measurable 

stimuli and a set of measurable behavioral responses. This is a useful model for a range 

of animal behaviors (Jennings, 1906; Skinner, 1938b), as well as some human behavior 

(Leitenberg, 1976; Rincover, Newsom, Lovaas, & Koegel, 1977; Stahl, Thomson, 

Leitenberg, & Hasazi, 1974), and had it panned out generally, it would have been a major 

triumph for scientific psychology. Unfortunately, it was insufficiently powerful to serve 

as the basis for a comprehensive theory of human psychology and behavior, as the 

cognitivists demonstrated (Chomsky, 1959; Gardner, 1985; Graham, 2002).

The fundamental problem with the stimulus-response model can be identified in 

step #3 above—it lacks any capability for storing internal state (internal representations). 

For example, if a person faced with a challenging problem tries one strategy 

unsuccessfully five times in a row, she might decide on the sixth time to switch strategies 

based on the observation that the first one is not working. There is no information in the 

stimulus that triggers this difference—the stimulus situation could be identical in all six
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trials. Instead, the difference is caused by the fact that the person is internally keeping 

track of her past tries and using that information as part of her strategy-selection criterion. 

Since this internal information is not readily (or necessarily) accessible behaviorally (e.g., 

in the stimulus), the behaviorist stimulus-response model is unable even in principle to 

account for this important source of systematicity in the subject’s behavior. I have 

described a trivial example to demonstrate the general point. Chomsky (1959), Lashley 

(1951), and others have described more involved examples relating to linguistic behavior 

and other domains, but these examples all point to the same root problem—no capacity 

for storing internal state (representations) in the stimulus-response model.

Cognitivism: Production System
In the 1950’s the cognitivists emerged on the scene and demonstrated definitively

that the radical behaviorist formulation would not work as a general theory of human 

cognition. The reason, as I already mentioned, is that there are important phenomena 

(such as aspects of language) that can be shown to require internal storage in order to be 

explained adequately. In essence, the cognitivists demonstrated unequivocally the need 

for some kind of internal representations—which are often identified with the “mind” that 

the behaviorists had tried to suppress—in any adequately complete theory of human 

psychology and/or behavior.

To see how the cognitivist framework differs from the behaviorist, consider the 

most prominent type of model within the symbolic paradigm—the production system 

(Anderson, 1987, 1993; Klahr & MacWhinney, 1998; Newell & Simon, 1961, 1972; 

Simon, 1992, 1999). A production system is a computational cognitive model that has 

two interacting components: working memory and production memory (Klahr &
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MacWhinney, 1998; Simon, 1999). Working memory stores a set of elements 

representing the current state of the world and/or the results of previous internal 

processing. For example, a production system for solving a balance beam task would 

include features of the balance beam problem, such as number of weights on each side 

and their distances from the fulcrum, in its working memory. Production memory 

consists of a set of condition-action rules called productions. In the balance beam 

production system, these rules would determine how the weights and distances encoded 

in working memory are transformed into predictions about which side of the balance 

beam will go down. When the condition part of a production matches an element in 

working memory, the action part is executed, which in turn might modify working 

memory and/or produce an output from the system.

Measurable Data
The standard approach to developing a production system model is an 

experimental procedure known as the “talk-aloud protocol” (Newell & Simon, 1961, 

1972). The basic idea is to pose a series of representative problems in the target domain 

to a group of human subjects (often, but not necessarily, domain experts) and have them 

externalize (through verbalization, writing, etc.) their thought processes as they solve the 

problems. Researchers analyze these data to identify patterns that inform the 

specification of algorithms (productions) and data structures (contents of working 

memory) that parsimoniously summarize the observed human performance data. The 

external inputs to the model ( x b )  are representations of key elements of the problems, and 

the model outputs (ys) are the final products of the problem solving sessions. The 

measurable data on which such models are typically based is therefore entirely 

behavioral.
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Representations (other than inputs and outputs)
In addition to the model inputs and outputs, the model also produces intermediate

products (e.g., partial solutions, temporary representations of sub-problems) that do not 

appear in the inputs but are derived from them, and that are used to produce but do not 

necessarily appear in the final solution that is identified as the output. These internal 

representations (Rintemai) are stored alongside the inputs and outputs in working memory, 

but in the present analysis these internal representations are distinguished from the 

system inputs and outputs6.

The question is, where should these representations be placed on the analytic 

framework? They are definitely internal representations, so we can rule out Rb- But the 

cognitivists are explicitly agnostic with regard to the physical structures and processes 

supporting these internal representations (Marr, 1982; Newell & Simon, 1972; Simon, 

1992; Smolensky, 1988); in fact, this is an important defining feature of the functionalist 

view (Churchland, 1988; Levin, 2004; Smolensky, 1988). They are, however, 

materialists, so we can at least state with certainty that the internal representations in this 

theoretical framework can in principle be described by some unknown function of 

structural and activity-based functions and representations in the nervous system:

Rintemai =  F ? (R s , R a ,  F s , F a)

This is depicted in Figure 2.6 by combining the activity and structural levels (and all their 

inputs, outputs, and contents) into a single black box labeled Rintemai-

6 Note that this demonstrates a unique feature o f the current analytic framework: elements that look 
superficially the same within a modeling paradigm—such as the diverse elements stored in a production 
system’s working memory— are identified systematically in a more differentiated maimer here. In this 
case, the contents o f  working memory are identified as either inputs, outputs, or the intermediate products 
o f problem solving processes. An important feature o f this framework is that it supports a separation 
between the physical model and the theory it represents.
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Figure 2.6: A production system model from the symbolic paradigm represented 
in terms of my analytic framework

Level: “B”
External Behavior 

Yb — F b (x b , Rintemai)
Rintemai— ^ b(Xb? R  internal)

R intem ai
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Functions Relating Inputs to Outputs
A generic production has the form:

If <Condition> then <Action>

Or, rewriting it as a function:

<Action> = Fj(<Condition>)

The production system inputs and outputs are derived from behavioral data, and 

the internal representations are inferred from behavioral data without regard for the 

underlying organization of physical structures and processes. Similarly, the productions 

are inferred from behavioral data with the goal of providing a parsimonious account of 

the transformation from behavioral inputs to behavioral outputs, without reference to 

specific physical structures and processes internal to the system. I would argue, 

therefore, that the functions relating inputs (xB) to outputs (yB) also belong at the 

behavioral (or external) level (FB):

<Action> = FB(<Condition>)

Mannings Relating Elements Across Levels
On the surface, the production system so far looks very much like the

behaviorist’s stimulus-response model from the previous section:

<Response> = FB(<StimuIus>)

The difference, of course, is that the productions link external behavior to internal

representations. Specifically, the production conditions apply to internal representations

as well as system inputs, and the production actions can modify internal representations

as well as producing outputs:

Rintemai — F B(x B, Rintemai) 
yB — F B(XB, Rintemai)
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Note that these equations also implicitly define M Ba, which specifies the relationship 

between elements at the behavioral and internal activity levels.

If we step back and look at the system in terms of input-output behavior alone, we 

can ignore the first equation and characterize the system using just the second one:

yB — F b(Xq , Rintemai)

This looks superficially like a small difference from the behaviorist stimulus- 

response model (involving just the addition of Rintemai), but the differences in terms of 

implications could hardly be more dramatic. The behaviorist framework is demonstrably 

too weak to model certain straightforward but important aspects of human behavior 

(Chomsky, 1959; Gardner, 1985; Jeffress, 1951; Lashley, 1951). The symbolic 

paradigm, in contrast, is in principle powerful enough to model any input-output 

behavior, no matter how complex (Chown, 2004). The potential power of these models 

is not a problem per se and, indeed, is often cited as a point in their favor. In a later 

section I will argue, however, that this degree of power combined with the functionalist 

insistence on agnosticism regarding implementation details insulates the symbolic 

paradigm from empirical verification. That is, these two factors combined basically 

render symbolic paradigm models virtually unfalsifiable, thereby moving them beyond 

the reach of scientific investigation.

Computational Neuroscience: Perceptrons
Around the same time as the cognitive revolution was gaining momentum, people in the 

nascent field of computational neuroscience were exploring neurally-inspired models of 

information processing in an effort to understand how cognitive functions are physically 

implemented in neural structures and processes (Anderson & Rosenfeld, 1998;
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Sejnowski, Koch, & Churchland, 1988). One of the most famous early neural models 

was called the perceptron (see Figures 2.7 and 2.8; Anderson & Rosenfeld, 1998;

Gardner, 1985; Rosenblatt, 1958). Researchers sought to use the perceptron model to 

gain insight into the basic neural mechanisms of information processing underlying more 

complex forms of perception and cognition.

Mathematical Definition of the Perceptron
The perceptron was intended to model (however crudely) the behavior of neurons

(Figure 2.7) or collections of neurons in the nervous system (Figure 2.8; Anderson, 1995;

Rosenblatt, 1958). For a network of units working together on a single problem, the j th

node computes a simple function of its inputs and associated weights (w;) of the

following form:

outputj =  sgn(Ej Wj*inputj)

In this equation, sgn(») is a function returning the sign of its argument (-1 or +1), 

and the index i ranges over all the inputs for the node under consideration.

If there is more than one node in the network, then the inputs to the network are 

just the inputs to all of its constituent nodes, and the network output is simply the vector 

of outputs for all the nodes in the network (Figure 2.8):

outputNetwork = vectoranj(outputj) = vectoraiij(sgn(Ej Wj*inputj))

The perceptron can be analyzed by systematically identifying how each element 

in the equation above can be identified with an appropriate element in the analytic 

framework of Figure 2.3.
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Figure 2.7: Key structures of a spinal motor neuron (left), and corresponding 
elements of an analogous node from a perceptron (right). In the biological neuron, 
dendrites collect stimulation from other neurons. If the total stimulation arriving on all 
the dendrites at one time exceeds a threshold, the neuron fires, sending activation down 
its axon. The perceptron node performs a similar operation. It sums its inputs, and if 
that sum is greater than zero it “fires” by generating a positive output. The efficacy of 
the biological synapse (which is modified by biological learning processes) is 
represented in the simulated model by the weight on each input connection (which is 
modified by simulated learning algorithms). The inputs to a neuron are modulated by 
the synaptic efficacy before being summed at the cell body, just as the input to a 
perceptron node is multiplied by the weight before being summed by the node.

a) Biological Neuron b) Perceptron Node

dendrites ^

cell body synapse

Inputs

Node
weight

axon Output ►
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Figure 2.8: Example of a perceptron network. The original 
perceptron had one layer of modifiable connections between input and 
output nodes.

Output
Activity..............

Output ..............
Nodes

Input
Nodes...............►

Input  .......... ► 0 1 0  0 1 0  1 0
Activity
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First, the inputs and outputs for each node are meant to model patterns of activity 

in the nervous system, so these can be identified with xA and yA (dropping the node 

subscripts for readability and rewriting the argument to sgn(*) as a list of variables):

yA = sgn(w, xA)

The perceptron weights are meant to model structures in the nervous system like 

neuron thresholds and synapse strengths, so these can be identified with representations 

at the structural level (Rs):

yA = sgn(Rs, xA)

The sgn(*) function is a model of the transfer function of a basic neural computing 

element (whether an individual neuron, a cortical column, or some other basic unit of 

computation in the nervous system). If we assume for the sake of concreteness a 

correspondence between a single neuron and a perceptron node, then I would argue that 

the node transfer function should be identified as a function at the structural level (Fs), 

since this is a basis function embodied in the neural structure that does not necessarily 

relate directly to the activity-level function computed by the system. In other words, at 

the network level the perceptron might be categorizing visual images, making medical 

diagnoses based on symptom patterns, or computing a whole host of other functions, but 

this basis function maintains its functional form regardless of what the network is 

computing. In this case, a particular pair of function values (xA, yA) would belong to the 

activation level, while the function itself exists at the structural level7. This completes the

7 Different interpretations o f  the node transfer function could lead to marginally different analyses in terms 
o f the present framework. The exact identifications o f model elements with analytic elements will typically 
not be nearly as important as consistency (once a determination for a class o f  correspondences is made, all 
others in that class should adhere to it) and careful bookkeeping to ensure no significant model element is 
identified with zero or more than one analytic elements.
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translation of the node transfer function into the analytic framework I have proposed, as 

follows:

yA = FS(RS, x a )

All that remains is to analyze the perceptron at the network level. Plugging the 

node equation back into the network equation yields:

o u t p u t N e t w o r k  = Yi = vectoranj(Fs(Rs, X a ) )

The network output (y) is clearly at the same level as the outputs from the individual 

nodes that comprise it:

yA = vectoranj(Fs(Rs, xA))

Finally, the vector(*) function is a specification of the network architecture. This 

function defines the activity-level function computed by the overall network, and will 

change depending on the structure of the task domain. In perceptrons, the network output 

is simply an aggregation of the individual node outputs in the form of a vector (hence, the 

function name “vector(*)”). For this reason, I have placed it at the activity level (FA):

yA = Fa(Fs(Rs, x a ) ) ,  where:
xA are the network inputs 
yA are the network outputs 
Rs are the network weights and thresholds 
Fs = sgn(*) is the basis function
Fa = vector(») is a network connectivity function (or composition function) 
Note that MAs is defined implicitly by the form of Fs and FA

This completes the analysis of the perceptron equations. However, at the 

macroscopic level, many computational neuroscientists working with the perceptron 

were, like the cognitivists, trying to account for external behavior (Rosenblatt, 1958).

That is, the measurable data used to define the inputs and outputs to the model were 

typically derived from behavioral observations, not measurements of internal activity
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such as single-cell recordings, so these behavioral inputs (xB) and outputs (yB) have yet to 

be accounted for in this analysis. In terms of the framework in Figure 2.3, we need to 

specify the mapping from behavioral inputs to activity-level inputs (MyBA) and the 

mapping from activity-level outputs to behavioral outputs (MyBA)- This requires a slight 

digression.

Shannon’s Information Theory and the Information Equivalence 
Mapping

A powerful general principle used (at least implicitly) in virtually all theorizing 

and modeling is the idea of “information equivalence,” mundane examples of which we 

all encounter regularly in our everyday lives, but which was not formalized until 

Shannon’s (1948) paper A Mathematical Theory of Communication. The basic idea is 

simple enough to illustrate, as follows. Consider the numeric symbol “47”, which 

specifies a well-defined referent (the number forty-seven). Given a set of discrete 

objects, for example, it is straightforward to determine unambiguously whether there are 

47 of them or not. The abstract concept behind the number 47 does not change even if 

we give it a different label. For example, in binary notation (such as is used by a digital 

computer) the same number would be represented as 101111, and in Roman numerals it 

would be XLVII. Despite the differences in surface appearance, all three representations 

pick out the same entity (the number forty-seven) from the infinite array of possible 

referents (in this case, the natural numbers). We might say that these three 

representational systems exhibit informational equivalence, at least with respect to the 

natural numbers, because they cover the same field of reference, they pick out the same 

set of entities, and there is a reliable procedure for translating between them.
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This general principle applies in a similar manner in the domain of modeling. 

When a cognitive scientist builds a production system model of problem solving behavior 

in the domain of balance beam problems, for example, she assumes that the features of 

the current balance beam problem encoded in the model’s “working memory” (e.g., 

number of weights and distance from the fulcrum on each side of the balance) contain the 

same information as the features used by the human subject faced with the same problem.

Similarly, when an artificial neural network (like the perceptron) is applied to 

model behavioral data, the modeler assumes that the relevant information present in the 

external stimulus (the same balance beam problem, for instance) is preserved as it passes 

through the sensory system and appears as an activity pattern at the input to the network 

actually responsible for solving the problem. The format might change (even 

dramatically), but the assumption is that the core information is preserved.

For present purposes, I have dubbed this the information equivalence mapping, 

and assigned it the symbol HCZ, which is a cross between a capital letter “I” (for 

information) and an equal sign (for equivalence). This, I submit, is the mapping (M xba) 

that links the external behavioral inputs with the activity-level inputs of the perceptron 

and the mapping (M vba) from the activity-level outputs of the perceptron to the behavior- 

level output being modeled by the system:

The complete perceptron analysis is summarized graphically in Figure 2.9.

In an interesting historical parallel, proponents of the symbolic paradigm used 

methods similar to those they leveled against behaviorism (for example, proof-by- 

counterexample) to eliminate the perceptron as a viable basis for a theory of psychology
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Figure 2.9: A perceptron model represented in terms of my analytic framework

Level: “B”
External Behavior -> Yb

Level: “A”
Internal Activity

y A =  Fa(Fs(R s, X a ) )

Fa(*) =  vector(*)

Level: “S”
Internal Structure

Fs =  sgn(») [basis fcn \ 
Rs =  w eights, etc.
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(Minsky & Papert, 1969). In effect, Minsky and Papert demonstrated that the perceptron 

could not—even in principle—model certain capabilities that people routinely 

demonstrate (for example, judging whether a geometric figure is closed or not). The 

critical problem derives from the form of FA (the network connectivity function); with 

only a single layer of nodes, the network is only as powerful as any single element in it, 

and a perceptron node can only solve a relatively simple class of problems that are 

linearly separable (see Minsky & Papert, 1969 for a careful treatment of these issues; see 

Elman et al., 1996 for a less technical but more readable account). Researchers knew that 

the limitations of the perceptron could be overcome by adding an additional layer of 

nodes and connections between the inputs and outputs. However, it took more than 

fifteen years of additional theoretical and applied work combined with the advent of fast 

and inexpensive computers to demonstrate the capabilities of the refined models and 

generate substantial interest in them among researchers in the field (Anderson & 

Rosenfeld, 1998).

Computational Neuroscience: Multi-Layer Perceptrons
Minsky and Papert all but extinguished ANN research when they so decisively

eliminated the perceptron as a framework for modeling human cognition (Anderson & 

Rosenfeld, 1998; Gardner, 1985). Researchers eventually figured out how to overcome 

the technical challenges involved in adding additional layers of nodes with modifiable 

connections to the basic perceptron (Anderson & Rosenfeld, 1998; Gardner, 1985; 

Rumelhart et al., 1986), introducing what is sometimes called the “multi-layer 

perceptron” (or MLP for short; see Figure 2.10) to distinguish it from the original single

layer perceptron (Figure 2.8).
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Figure 2.10: Example of a multi-layer perceptron with two layers of 
modifiable connections between input and output nodes
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Mathematical Definition of the Multi-Laver Perceptron
Like the original perceptron, the MLP is intended by many to model the behavior

of neurons or collections of neurons in the nervous system (recall Figure 2.7; Elman et

al., 1996; McClelland & Rumelhart, 1986; McLeod, Plunkett, & Rolls, 1998; O'Reilly,

1999; O'Reilly & Munakata, 2000; Rolls & Treves, 1998; Rumelhart & McClelland,

1986).

For a network of units working together on a single problem, the j th node
o

computes a sigmoid function of its inputs, as follows :

outputj = 1/(1 + exp-(Z, weightj * inputs))

The function on the right-hand side is called a “sigmoid” function (it looks like a 

squashed-S). Simplifying the notation, therefore:

output = sigmoid(weights, inputs)

The analysis of this equation is essentially the same as for the perceptron node transfer 

function in the previous section. The result is the same generic equation:

y A = F s(R s, xa)
Where:

Fs(*) = sigmoid(») is the basis function for this MLP instead of sgn(*)

At the network level, the connectivity function is different for the MLP than it 

was for the perceptron (most importantly, as I mentioned, because the MLP has more 

than one layer of modifiable connections). Instead of simply aggregating the node 

outputs into a vector and taking that as the network output, in the MLP the function 

relating individual nodes to overall network function (which I am calling network(*)) is

8 There are actually a variety o f  functions used for node transfer functions in MLPs by different researchers. 
They should all lead to the same end result when analyzed in this framework. This is one o f the benefits o f  
this analytic framework— it allows for the suppression o f a lot o f variation in the model details in order to 
highlight the key definitive differences between model families and theoretical paradigms.
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more complicated in its details but again results in an equation similar to that of the

perceptron:

yA = Fa(Fs(Rs, x a )) , where:
xA are the network inputs
yA are the network outputs
Rs are the network weights and thresholds
Fs = sigmoid(*) is the basis function for this MLP
Fa = network(») is a network connectivity function specific to each MLP

In addition, the same reasoning applies as for the perceptron in the following cases:

M xbA = 1— (information equivalence mapping)
M yBA =  = E =

The results of the analysis are summarized graphically in Figure 2.11.

So far, this analysis foregrounds the parallels between the original single-layer 

perceptron (Figure 2.9) and the MLP (Figure 2.11) at the abstract level. The differences 

are mostly abstracted away in the details of Fs (the basis function) and FA (the 

architecture specification or connectivity function). There is a difference arising from the 

additional layer(s) of the MLP, however, that needs to be accounted for explicitly here. 

The MLP introduces a layer of “hidden nodes” whose activity-level outputs are not 

accounted for in either the network inputs (xA) or outputs (yA). These patterns clearly 

belong at the internal activity level, and they are the products of functions (not functions 

themselves), so they can only be identified with RA-that is, activity level representations 

(see Figure 2.11). Indeed, a number of researchers have pointed to these hidden layer 

activities as providing a neurologically grounded model of our cognitive internal 

representations (Elman et al., 1996; Laakso & Cottrell, 2000; McLeod et al., 1998; Quinn 

& Johnson, 1997).
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Figure 2.11: A multi-layer perceptron (MLP) model represented in terms of my 
analytic framework

Level: “B”
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Note that MAs is defined implicitly by the forms of Fs and FA. One interesting 

property of this mapping is that, unlike the other two (MxbA and MyeA), it does not exhibit 

information equivalence ( ■ ) .  Specifically, the information encoded in the structural 

representations (Rs=weights, thresholds) is not equivalent to the information encoded in 

the activity-level internal representations (RA=hidden layer outputs) or the activity level 

inputs and outputs (xA and yA).

When people talk about “distributed representations” in neural networks, they

typically fail to specify whether they mean the distributed structural representations

(Rs=weights) or the distributed activity-level representations (Reactivation patterns).

The distinction is important, for the reason just cited: although the structural

representations and activity-level representations are both distributed, these two sets o f

representations are not informationally equivalent9 (that is, they contain different

information). I submit that it is this feature of neural networks, not the existence of

distributed representations per se, which differentiates ANNs from other types of

computational models (especially those based on the symbolic paradigm). The fact that

ANNs (at least when offered as models of biology) are parallel (not serial), use

distributed representations (not localist), are sub-symbolic (not symbolic), exhibit

graceful degradation (not catastrophic failure), and support content-addressable memory

are all direct consequences of this more fundamental fact, not the other way around. I

argue later in this paper that this insight can be used to differentiate between the symbolic

9 For example, I just saved the document I am editing in my word processor to the hard disk. The version 
o f the document that I am editing in the computer’s working memory (RAM) and the version just saved to 
hard disk use different representational media and formats, but they contain the same information (words, 
formatting commands, etc.)— they are informationally equivalent. In other words, at an abstract level they 
are basically copies o f one another even though they exhibit superficial differences. Earlier today I took a 
picture o f my son using my digital camera and copied the photo onto this computer’s hard disk. This 
electronic manuscript and that photograph are obviously not copies o f one another at any level— they 
contain very different information. Therefore, those two files are not informationally equivalent.
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paradigm and the ANN paradigm (although not in the obvious way through direct 

comparison). I discuss these issues further in a later section.

Insights from the Intertheoretic Analysis
Figure 2.12 summarizes the results of the four analyses. The similarities and 

differences between the frameworks emerging from my analysis are neatly summarized 

in a two-by-two table. Along the vertical axis, the behaviorist model and the production 

system are grouped together under the “functionalist” heading while the perceptron and 

the MLP are grouped together under the “physicalist” heading to reflect their different 

primary foci on external and internal data, respectively. On the horizontal axis, the 

behaviorist model and the perceptron are categorized as having no internal 

representations, while the production system and MLP are both identified as supporting 

internal representations.

In an interesting historical parallel, the fundamental problem with the perceptron 

is quite similar to the fundamental problem with behaviorism, as this diagram makes 

clear: both lacked a mechanism for representing information internally, which made them 

demonstrably too weak to model significant features of human cognition and behavior. 

Proponents of the symbolic paradigm used similar methods to provide the decisive blows 

to both frameworks, which was undoubtedly a major factor in the subsequent ascendancy 

o f that framework for several decades. As I have described, the cognitivist response to 

the behaviorist problem was basically to add the capacity for internal representations to 

the behaviorist framework (compare the top two panels in Figure 2.12). Similarly, the 

response of computational neuroscientists was to add what is called a “hidden layer” to
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Figure 2.12: Taxonomic summary of the analyses of four psychological models:
a) behaviorist stimulus-response model, b) symbolic paradigm production system model, 
c) single-layer perceptron, and d) multi-layer perceptron (MLP),
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the perceptron that comes between the input and output layer, providing the capacity for 

internal representations in that model (compare the bottom two panels in Figure 2.12).

In both cases, the change to the paradigm looks on the surface to be quite 

superficial from its predecessor. The consequences, however, are profound. Whereas the 

original frameworks (behaviorism and the perceptron) were inadequate to model human 

cognition, the paradigms that replaced them (the symbolic paradigm and the MLP, 

respectively) are provably able to model any set of input-output transformations.

The major difference between these two historical progressions can be seen along 

the vertical axis in Figure 2.12: the way the theories are constructed is quite different (and 

complementary) in terms of the material bases in which they are grounded. Behaviorism 

and the symbolic paradigm are grounded in behavioral data, and insist on maintaining a 

black box around the internal mechanisms of cognition, beyond the demonstrable need 

(in the case of the symbolic paradigm) to allow for internal representations. The 

perceptron and MLP, in contrast, are derived from observations about the structure and 

function of the nervous system (see, for example, the derivation of a simplified neural 

network model from a detailed biophysical neural model in Ermentrout, 1994), which are 

then used to investigate when and how these kinds of internal structures and processes 

can give rise to observable patterns of behavior.

The comparison in the bottom row demonstrates why being biologically based 

does not in itself make for a better or more plausible model. The perceptron is 

implausible and the MLP is plausible, even though both are quite similar in terms of their 

biological grounding.
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This analysis also suggests how one might construct a typology for systematically 

organizing extant theories (Figure 2.12 is one example of how that might look), and 

perhaps a tool for identifying new possibilities that have not been previously explored. 

For example, none of the frameworks considered in the present analysis included any 

representations at the behavioral or external level (Rb). Theoretical paradigms that might 

need to incorporate such representations include the contextualist (Rogoff, 1990) and the 

situated cognition frameworks (Lave & Wenger, 1991), both of which put a heavy 

emphasis on the role of external symbols and artifacts in cognition and behavior.

The present analytical framework should be able to accommodate such external 

representations, and the foregoing analysis highlights two sets of issues that would arise 

in connection with their use. First, the current consensus among computer scientists is 

that a theoretical framework that incorporates external representations cannot in principle 

be any more powerful than either the production system or the ANN modeling 

frameworks (Chown, 2004). It is not immediately obvious, therefore, what additional 

theoretical leverage is gained by appealing to external representations beyond what is 

afforded already by internal representations. Moreover, an account of the leverage 

gained from external representations cannot be based on the assumption that these other 

models are somehow representationally impoverished. Although any given production 

system or ANN might exclude critical explanatory variables, in principle the missing 

variables could be accommodated by the general modeling frameworks from which these 

particular models are derived. While it is very possible that symbolic and neural modelers 

could benefit from the shift of emphasis or broadened view of the contextualist and/or
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situated cognition perspectives, it is not obvious on the face of it that the underlying 

theoretical frameworks offer any additional explanatory power in principle.

Second, an account of the relationship between external representations (for 

example, the words printed in a book) and internal representations (for example, the 

contents of working memory while the book is being read, or the changes to long term 

memory resulting from studying the book) would be necessary to avoid the critical 

paradigmatic problems faced by the behaviorists. Although it is clear that externalized 

cultural structures, practices, and artifacts have a central role in shaping behavior, the 

effects of such external representations are also clearly mediated in every case by the 

neural and cognitive structures of individual persons. In this sense, the external 

representations are redundant with the internal representations that are generated when 

people interact with them, and the internal representations arguably have greater 

epistemological primacy since they are the structures implicated in carrying out the actual 

work. In addition, the diverse interpretations that can be imposed on a cultural artifact 

like a book arise not from the book itself—which is largely invariant from one encounter 

to the next—but from the interaction of diverse brains and minds with the artifact. For 

example, the evolution of human languages is driven in large part by the interaction 

between external representations (e.g., spoken and written words) and variation in the 

internal representations of individuals who use a language and teach it to others 

(Tallerman, 2005). Consequently, internal representations must be included (either 

explicitly or implicitly) in any theory of external representations that acknowledges the 

kind of representational variability just described, but the converse is not necessarily true.
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Taking a step back, it appears that the cognitivists and the computational 

neuroscientists are not arguing so much about how the world is as about how the world 

can best be described. Evidently, a direct functionlist vs. physicalist comparison is not 

going to cut very deeply because both are equally powerful and both are fundamentally 

materialist; they are just grounded in different material information sources. In 

particular, the kinds of tactics used by the cognitivists to discredit the two frameworks in 

the left-hand column in Figure 2.12 will not be able to differentiate between those on the 

right. Moreover, the two frameworks on the right are as powerful as any currently 

conceivable computational systems can be (Haykin, 1999), which means that purely 

analytic strategies are unlikely to be effective in resolving the longstanding debate over 

which is the superior framework for modeling human cognition (Chown, 2004). It seems 

to me that a new and distinct approach is called for in order to differentiate between these 

two frameworks, one perhaps based on empirical methods instead of analytic. In the next 

section I explore some possibilities in this area, by applying results of the previous 

analysis to identify promising entry points.

Previously Proposed Bases for Comparing the Symbolic 
Paradigm to the ANN

Many attempts have been made (mostly by ANN researchers) to distinguish 

between the symbolic paradigm (e.g., production systems) and the MLP (or other multi

layer ANNs) on various bases. For example, computational neuroscientists point out that 

ANNs tend to use distributed representations while production systems tend to use 

localist or modular ones (Elman et al., 1996; McLeod et al., 1998), that ANNs are parallel 

and production systems are much more serial (Elman et al., 1996; McLeod et al., 1998), 

and that ANNs operate on “subsymbolic” data structures while production systems
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operate on “symbolic” ones (Smolensky, 1988). ANN researchers also often point to 

intrinsic characteristic behaviors of ANNs that mirror characteristic behaviors of 

biological nervous systems, including graceful degradation, spontaneous generalization, 

and content-addressable memory (Elman et al., 1996; McLeod et al., 1998; Smolensky, 

1988), which are not shared intrinsically by production systems.

In my view, none of these attempts to differentiate ANNs from production system 

models is very convincing. There are two sets of responses from the symbolic camp to 

each of the proposed dichotomies, one particular and the other general. The particular 

response in each case basically points out why the difference alluded to is not 

fundamental (Klahr & MacWhinney, 1998). For example, one can prove using computer 

science theorems that any parallel algorithm can be converted into a serial algorithm that 

performs the same set of computations (but not the other way around—Marr, 1982). In 

addition, the distinction between “distributed” representations and “localist” 

representations is not well-defined (Klahr & MacWhinney, 1998). The text of this paper 

is spatially distributed across each page and also across many pages, yet this would be 

considered a paradigmatically localist representation. Similarly, a “symbolic” model 

could be made progressively more “sub-symbolic” if the granularity of its inputs, 

representations, and outputs were made finer and finer.

The more general categorical refutation of all such attempts to differentiate ANNs 

from production systems is based on the fact that these are all accidental—not essential— 

properties o f a particular production system implementation. In other words, these are by 

and large all physicalist details of the model to which a functionalist is not theoretically
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committed one way or another (Churchland, 1988; Fodor, 1968; Harman, 1989; Levin, 

2004; Sellars, 1954).

If none of these arguments is conclusive, then why do they persist? The 

intertheoretic analysis conducted above gives insight into why symbolic models like 

production systems and artificial neural networks like MLPs are not directly comparable, 

why the debaters seem to be talking past one another so often, and therefore why the 

debate persists without resolution.

First, if  we were to overlay the top and bottom panels in the right column of 

Figure 2.12, we would find that the only immediate correlation involves the external 

inputs ( x b )  and outputs (ye). The other behavior-level elements of the symbolic paradigm 

(Fb) have no counterpart in the MLP. This mismatch reflects the fundamental difference 

between the functionalist and physicalist accounts of a phenomenon or task domain (for 

instance, balance beam problem solving)—in this case it is a comparison between 

functionalist apples (Fb) and physicalist oranges (FA, etc.).

The remaining elements in the two diagrams do overlap—and must therefore refer 

to the same ontological referents. The difference has to do with their degree of referential 

transparency. The computational neuroscientists, by and large, are attempting to specify 

how the elements of the model map onto internal structures and processes—their ultimate 

goal is total referential transparency. The symbolic paradigm researchers, in contrast, 

acknowledge the theoretical necessity of internal representations, but insist—even in 

principle—on complete black box opacity regarding the internal structures and processes 

supporting those representations. The incomparability here arises from the attempt to 

compare the computational neuroscientist’s individual apples (e.g., FA, RA) and oranges
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(e.g., Fs, Rs) to the symbolist’s bag of mixed fruit (Rintemai)- This is how the two 

frameworks can ostensibly refer to some of the same ontological entities (internal 

representations) without being directly comparable on any single point.

So, how can these two frameworks be compared? The most obvious strategy 

follows from the preceding observations, and involves comparing them on the only 

elements that both overlap and unambiguously share common referents: the external 

inputs ( x b )  and outputs (ye). In fact, this is what is often done. Given a single set o f 

observations in a well-specified task domain (such as the balance beam task), researchers 

who want to evaluate the performance of a particular model or compare the two 

frameworks construct (or otherwise acquire) symbolic models (e.g. production systems) 

and/or artificial neural network models (e.g., MLPs) of the target behavior (solving 

balance beam tasks). They then evaluate and/or compare the models based on their 

relative goodness-of-fit to the observed data (see, for example, Besner, Twilley, McCann, 

& Seergobin, 1990; Elman et al., 1996; Klahr & Siegler, 1978; McClelland, 1989; 

McClelland & Jenkins, 1991; McLeod et al., 1998; Plaut, McClelland, Seidenberg, & 

Patterson, 1996; Seidenberg & McClelland, 1989; Siegler, 1976,1981; Stoianov, Stowe,

& Nerbonne, 1999). This approach has some utility, but it has a significant drawback.

As I mentioned earlier, production systems and MLPs are equally powerful, and 

indeed both are powerful enough (given sufficient time, representational resources, and 

programming finesse) to model any input-output behavior. So when one model performs 

better than another, the other camp simply has to add more memory or nodes and perhaps 

tinker with the programming a bit until it matches or outperforms its rival, and this is 

often what occurs in practice (in the case of regular and irregular verb processing
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models, see Besner et al., 1990; Coltheart, 1978,1985; Coltheart, Curtis, Atkins, & 

Haller, 1993; in the case of the balance beam models, see Inhelder & Piaget, 1958; Klahr 

& Siegler, 1978; McClelland, 1989; McClelland & Jenkins, 1991; McLeod et al., 1998; 

Plaut et al., 1996; Seidenberg & McClelland, 1989; Siegler, 1976; Stoianov et al., 1999). 

This game of leapfrog can continue ad infinitum without any real hope of ultimately 

resolving the issue (Bechtel & Abrahamsen, 1991)—certainly not without additional 

theoretical constraints (some candidates for which I discuss in a later section of this 

paper).

Part of the problem, I would argue, is that it is not widely recognized why (or 

perhaps even that) these frameworks are not comparable, because the predominant 

analytic framework within which these issues are usually discussed (that is, Marr’s 

“levels of explanation”— see MacDonald & MacDonald, 1995) entails ambiguities that 

obscure this important point. In the next section, I apply my analytic framework and the 

results derived in the previous sections to try and pinpoint the source of this obscurity and 

suggest a way to resolve it.

A Comparison of the Production System and the MLP

Marr’s Three Levels of Explanation
Marr (1982) proposed that a full understanding of any information processing

system (e.g., the human visual system) ultimately involves understanding it from three 

perspectives (Figure 2.13): computational theory (computation), representation and 

algorithm (algorithm), and hardware implementation (implementation). Marr’s levels of 

explanation are widely accepted and employed by cognitive scientists (MacDonald &
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Figure 2.13: Marr’s three levels of analysis (left-hand side) and his cash register 
example (right-hand-side)

Example: Computational Theory
A cash register handles problems o f addition 
(properties include associative, commutative, 

transitive, additive inverse).

Example: Representation and Algorithm
The cash register uses Arabic numerals 

[representation] and adds multi-digit 
numbers by the usual strategy o f  carrying 

10’s digit(s) in a column [algorithm].

Example: Hardware Implementation |
The cash register implements the Arabic I

numerals as successive notches on a wheel. !

Hardware Implementation
How can the representation and algorithm be 

realized physically?

Computational Theory
What is the goal o f  the computation, why is 
it appropriate, and what is the logic of the 

strategy by which it can be carried out?

Representation and Algorithm
How can this computational theory be 

implemented? In particular, what is the 
representation for the input and output, and 

what is the algorithm for the transformation?
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MacDonald, 1995; Posner, 1989). Marr (1982) offers the example of a cash register to 

make the definitions concrete (Figure 2.13).

The computation level is an abstract specification of the task domain; in other 

words, it specifies the inputs and outputs and describes the computational goal of the 

system, along with the rationale for carrying out the computation in the context of the 

task (also sometimes called “semantics”—Posner, 1989). A cash register handles 

addition problems, which is appropriate when people are making purchases because, for 

example, buying nothing should cost nothing (additive inverse); buying several items 

together should cost the same as buying them separately (associative property of 

addition); and purchasing the same set of items at fixed prices should always result in the 

same total cost, regardless of the order in which they are purchased (commutative 

property of addition). In terms of my framework it can be seen that this “level of 

explanation” is really a formal specification of the information equivalence mapping 

obtaining between objects (e.g., prices of consumer items) and operations (e.g., tallying 

purchase totals) in the world and elements (representations and transformation functions) 

in this particular model.

The representation and algorithm level specifies a format for the information 

involved (e.g., Arabic numerals) and an effective procedure that can carry out the 

computation on that representation (for example, the familiar method of carrying tens). 

Some people have called this the “syntax” specification for the system (Posner, 1989).

Finally, the implementation level specifies the details involved in realizing the 

computation in hardware (e.g., in terms of digital bits, transistors, synapses, spike trains, 

etc.). Marr considered this level to be probably beyond the purview of cognitive science.
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There is some ambiguity in the level definitions (Posner, 1989), but it seems clear 

enough that a production system model belongs at the “representation and algorithm” 

level, since it provides a representation for the input and output (encoded in “working 

memory”) and an effective procedure (or algorithm) for transforming inputs into outputs 

(comprised of the set of productions).

Although it might appear that an MLP neural network could belong at Marr’s 

implementation level, this is not the case—MLPs could be implemented either on digital 

computers (as ANNs typically are, as a matter of fact) or in a network of biological 

neurons (as a biological neural network). Furthermore, the MLP, like the production 

system, specifies a set of inputs and outputs along with an effective procedure for 

transforming inputs to outputs. Therefore, production systems and MLPs both belong at 

Marr’s “representation and algorithm” level of explanation.

A conflict arises at this point. Production systems and MLPs are on the one hand 

specified in terms inviting direct comparison: both are effective procedures dealing in 

many cases with the same external inputs and outputs that can be simulated on a 

computer, and both belong at Marr’s representation and algorithm level of explanation.

On the other hand, I argued based on my analysis that despite appearances they are not 

really directly comparable at all (recall Figure 2.12b and 2.12d).

The resolution of this dilemma comes from recognizing that Marr’s 

“representation and algorithm” level allows for (at least) two distinct theoretical 

renderings of any given model: functionalist and physicalist. For example, the 

production system analysis earlier was based on the functionalist view, with the result 

shown in Figure 2.12b. This result reflects the fact that the functionalists do not want to
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make explicit commitments concerning the ontological referents of the production system 

model’s internal mechanisms.

If we were to take the stance (as a thought experiment) that the elements of the

production system model could be correlated with specific entities in the nervous system,

we would end up with a different result. Assume for the moment that humans have a

working memory that is structured like a production system’s. A production system

working memory is typically based on a computer’s random access memory (RAM)

which is a vast array of binary switches called bits that can take the value of 0 or 1.

Working memory in such a phsyicalist production system would be most analogous to

the inputs, outputs, and internal representations in an MLP, so these elements would in

this case be identified with activity-level inputs, outputs, and representations (xA, yA, and

Ra, respectively). Production memory is also typically based on RAM. The productions

in production memory are most analogous to the functions computed at the network level

in an MLP (FA). The basis functions and durable representations modifiable via learning

belong at the structural level. In a computer, the analog of basis functions would be the

intrinsic operations of the central processing unit (identified with Fs). The durable,

modifiable representations (Rs) are those stored on devices like hard disks.

In summary10:

yA = Fa(xa, Ra), where:
yA are the activity-level outputs (e.g., the solution stored in working memory) 
xA are the activity-level inputs (e.g., the initial problem encoded in working 
memory)
FA are the production rules

101 have made an effort to make this case consistent with the MLP analysis, which also facilitates a 
comparison o f the two results. Some readers might object to the particular details o f  certain identifications
I have made. For example, it would be possible to reserve part o f RAM to store the results o f learning 
rather than saving them to a hard disk. I have made these examples concrete to clarity the exposition, and 
nothing important to the analysis hinges on these particulars.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

86

Ra are the contents o f working memory other than inputs and outputs (which 
could be the results o f previous computations as well as information read into 
working memory from long-term memory (Rs))
Rs are the contents of a hard drive or other medium that stores the results of 
learning long-term (that is, beyond the duration of the current task)
Fs are the primitive operations of the computer’s central processing unit

In addition, the same reasoning would apply as for the MLP in the following cases:

M xba = l (information equivalence mapping)

These results are summarized graphically in Figure 2.14.

In some symbolic models, information must be retrieved from the more durable 

structural representations (Rs) in the course of solving a problem (for example, imagine 

the constant p i has been learned by the system earlier and is needed currently to calculate 

the circumference of a circle). Before this information can be used, it must be loaded into 

working memory (Ra). The most common way to implement this in a symbolic system 

would be to read the pattern of bits representing the constant pi directly from the disk into 

RAM. In other words, the information stored in Rs and Ra would be informationally 

equivalent in this typical scenario (Rs 1 Ra). This mapping can be identified with 

Mas on the generic analysis diagram (Figure 2.3).

The results of this (hypothetical) physicalist analysis of the production system are 

shown in Figure 2.15 (bottom right), alongside the physicalist analysis of the MLP 

(Figure 2.15, bottom left), and below the functionalist analysis of the production system 

(Figure 2.15, top). This figure highlights a number of important insights.

Earlier I argued that the functionalist production system is not directly 

comparable to the physicalist MLP. This diagram makes it clear why that is true— 

because there is another interpretation of the production system model that is directly
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Figure 2.14: The result of a thought experiment, showing how a production 
system model would be represented in terms of my analytic framework, 
assuming the theoretical stance that elements in the production system model 
should be interpreted as representing physical entities in the nervous system
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Figure 2.15: The functionalist production system (a) does not make theoretical 
commitments concerning the referential relationship between its internal 
representations and entities in the nervous system, so it could in principle be 
implemented as (b) either a physicalist MLP or a physicalist production system
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comparable to the physicalist MLP. The production system on the bottom is comparable 

to the MLP, but no mainstream proponent of the symbolic paradigm holds that view of 

the production system model (Klahr & MacWhinney, 1998; Pinker, 1997)—the official 

party line is the view at the top. Moreover, the functionalist production system model (at 

the top) could in principle be realized using either a physicalist production system or a 

physicalist MLP (and there might be other options). Note, again, that these two models 

are not implementation models in Marr’s scheme, because each of them, in turn, could be 

realized in either a digital computer or a biological neural network (see Figure 2.16 for a 

simpler graphical summary of this point).

As I discussed, the two physicalist models entail logically exclusive hypotheses 

about the relationship between structural representations (Rs) and activity-based 

representations (Ra)- This physicalist interpretation of the production system model 

embodies the hypothesis that at least some of the structural representations (e.g., files 

stored on hard drives) are informationally equivalent to some of the activity-level 

representations (e.g., the contents of those same files loaded into RAM for processing).

The MLP model embodies the alternate hypothesis that the structural 

representations (e.g., connection weights and node thresholds) and activity-based 

representations (e.g., network activation patterns) are not informationally equivalent. 

Although both hypotheses can be true of different parts of the same system at the same 

time, they cannot both simultaneously be true of the same exact referent. I propose that 

these two mutually exclusive hypotheses could serve as the basis for empirical 

experiments to differentiate between different physicalist models (I describe one such 

experiment in chapter 3).
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Figure 2.16: A problem with Marr’s levels of explanation is that there is one 
missing

Marr’s Computational Theory Level of Explanation

Marr’s Representation and Algorithm Level of Explanation
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Model
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the same production 
system.

Physicalist Artificial 
Neural Network 

Model

These models are 
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Marr’s Hardware Implementation Level of Explanation
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Furthermore, the fact that the functionalist model (at top) accommodates both of 

these mutually exclusive hypotheses suggests that it is not falsifiable (at least with respect 

to this feature), and therefore not open to scientific investigation. The MLP, in contrast, 

makes a commitment to a particular kind of mechanism, which exposes it to 

empirical/scientific study in ways not possible for the functionalist symbolic paradigm. I 

propose that this is how the MLP can be differentiated analytically from the production 

system as it is conceived by the mainstream symbolic camp. In the next chapter I 

describe the results of an experiment designed to test aspects of the MLP hypothesis in 

this regard.

Both of the production system diagrams (functionalist and physicalist) are derived 

from the same physical production system model, and both belong at Marr’s 

“representation and algorithm” level of explanation. This example highlights a source of 

serious ambiguity in Marr’s formulation, since these two theoretical interpretations of the 

same physical model have very different consequences, as I have described. That is, 

Marr’s “representation and algorithm” level of explanation can accommodate very 

different types of descriptions (what I am calling “functionalist” and “physicalist” 

models), and as a result the important differences between these types of models cannot 

be distinguished within his framework. This ambiguity is probably also one reason why 

the connectionists and symbolists often seem to be talking past one another, because they 

really are—the symbolists are arguing from  a functionalist symbolic paradigm 

perspective while the connectionists are arguing against a physicalist production system 

perspective (see Figure 2.17)—but this discrepancy is not apparent from within Marr’s 

original framework.
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Figure 2.17: Confusion arises when researchers mistakenly assume a physicalist 
production system model is intended as a claim about neural implementation

Physicalist Functionalist
Production System Symbolic Paradigm

Model
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Based on the present analysis, I argue that Marr is missing a necessary level of 

explanation. We might call this the “virtual machine” level of explanation and place it 

between the current “representation and algorithm” level and the “mechanism” level 

(Figure 2.18). Alternatively, we might divide the “representation and algorithm” level 

into two new levels: functionalist-representati on-and-algorithm and physicalist- 

representation-and-algorithm. Explanations would be placed at one or the other level 

depending on their level of referential transparency, as discussed above. This deeper 

difference between theories has perhaps been further obscured by the oft-repeated 

observation that two representations with different surface formats can nonetheless 

contain the same information. We can all agree that surface format does not matter—but 

that does not imply (as this argument demonstrates) that there are no meaningful 

differences in representational types once we have controlled for surface format (see 

Bishop, 1995 for a technical overview of different classes of representational systems).

Marr’s cash register example can now be seen as an unfortunate choice to 

illustrate his levels of explanation, for two reasons. First, the cash register is basically a 

behavioristic system in the sense that it requires no internal representations to perform its 

function, because it can simply output a partial sum after each step and then take that 

partial sum as one if its inputs for the next step. (For this reason it is also a rather 

peculiar example to use, given the centrality of internal representations to cognitive 

science’s world view.) In a system like this where no internal representations are needed, 

there is really no pressing need to separate the virtual machine level of analysis from the 

implementation and/or representational levels because there is little internal complexity 

to model beyond what is specified in the representation and algorithm. In a system with
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Figure 2.18: A revised version of Marr’s levels of explanation, illustrated with a 
revised example

Computational Theory
What is the goal o f  the computation, why is 
it appropriate, and what is the logic of the 
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(Behavioral) Representation & Algorithm
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internal representations (such as language), in contrast, the schism between behavioral 

’’representation and algorithm” and implementational “virtual machine” arises because 

language processing involves more than simply mapping inputs to outputs. The system 

has to store information internally and the nature of the virtual machine doing the internal 

storing and manipulation has significant consequences for the machine’s behavior.

The second problem with this example is that the cash register is a synthetic (or 

engineered) system that we are free to imagine being designed any way we like, so the 

hardware implementation description acts like a “free parameter.” In particular, the cash 

register is not a “found” system that we are trying to understand in its own terms. In the 

case of a found system like the human brain, the implementation level is a constant that 

we are trying to understand, not a free parameter that we can specify any way we like. In 

the same way that a behavioral model (i.e., the representation and algorithm description) 

is specified to capture what is important about the system’s real-world behavior in order 

to understand it better, symmetry suggests that the other major unknown (the components 

of the hardware) should be mapped onto a functional model (the virtual machine) so it 

can be understood better, too.

To put it another way, the description of the hardware implementation in Marr’s 

original example (i.e., “Arabic numerals are implemented as ‘successive notches on a 

wheel’”) assumes the function of the hardware components are known a priori (in this 

case, the notches on a wheel are known to represent the Arabic numerals)— indeed, the 

hardware was designed specifically to implement the “representation and algorithm” 

specification of addition. In a system like the brain, on the other hand, where the 

functions of the hardware components (neurons, synapses) are not known a priori, a
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functional description of the hardware implementation (that is, the virtual machine 

description) is necessary to pick out the characteristics of the hardware that are assumed 

to be important, in the same way that the characteristics of behavior assumed to be 

important are picked out for the representation and algorithm description. In Figure 2.18 

I show how the cash register example would be handled in the revised version of Marr’s 

levels of analysis, which include the virtual machine level of explanation.

Note that this analysis suggests an alternate derivation of my analytic framework 

from a different starting point but leading to essentially the same result shown in Figure 

2.3. This derivation starts with Marr’s levels of explanation, and treats “behavior” and 

“hardware implementation” symmetrically since both are referents in the world that need 

to be modeled and understood, so neither would be included in the levels of explanation 

framework (just as “behavior” does not appear in Marr’s original framework). The 

“computational theory” is not really a level of explanation at all—it is a specification of 

the information equivalence mapping between referents in the world and symbols in the 

model. There would need to be two of these—one for behavior and one for the hardware 

implementation—to generate the functionalist (behavioral) representation and algorithm 

description and the physicalist (virtual machine) representation and algorithm description, 

respectively (Figure 2.19). Marr only included one because the functionalists only deal 

explicitly with the behavioral side of the system. If the virtual machine were next 

differentiated into structural and functional levels and the inputs, outputs, representations, 

and functions at each level were differentiated, the result would be identical to Figure 2.3, 

but with the addition of explicit terms for the mappings from real world phenomena 

(behavior, synapses, etc.) to features of the model that represent them. A major question
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Figure 2.19: Proposal for a revised version of Marr’s levels of explanation 
based on a symmetrical view of the behavioral and implementational aspects 
of the neuro-cognitive-behavioral system
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in the revised version of Marr’s framework becomes how to relate elements of the virtual 

machine to elements of the behavioral representation and algorithm model. This problem 

is precisely the one addressed by the scientific method for brain-behavior research I 

proposed in the introductory chapter of this dissertation.

Discussion
The analysis in this paper is motivated by a desire to conduct rigorous basic 

research on causal brain-behavior relationships to inform applied educational research, 

combined with a conviction that computational models can support the crucial step in this 

endeavor of bridging from brain mechanisms to behavioral patterns. The introduction of 

computational models into the research process raises a number of challenging questions, 

however, including:

1) What is the theoretical status of computational models? That is, how should we 

understand the models as theories of neural and psychological function and 

observable behavior?

2) How can we identify model properties and behaviors that represent a basis for 

valid inferences to humans (given model artifacts, model incompleteness, etc.)?

3) How can we verify the models empirically against human data?

I discuss implications of the present analysis for the first two questions in the following 

sections. The third question is the focus of the next chapter.

Theoretical Status of Computational Models
The first question has no single answer that applies in general because different

computational models have different philosophical and theoretical bases, commitments, 

orientations, and goals. In lieu of a blanket answer, therefore, I have proposed a general
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analytic framework that can be applied to any concrete computational model to provide 

an answer specific to that model. My decision to ground the framework in philosophical 

materialism was based on two considerations: 1) all major extant psychological and 

behavioral theories share a belief that mental and behavioral phenomena are ultimately 

manifestations of neural processes, so this provides a common reference point for 

comparing and contrasting disparate psychological theories; and 2) the real world is the 

sphere within which psychological theories, computational models, and the real-world 

phenomena being modeled all converge, so it is a natural perspective from which to 

investigate the theoretical status of computational models.

In part to demonstrate the utility of this framework and the process of applying it 

in specific cases, I analyzed four models of human psychology and behavior: the 

stimulus-response model, the production system, the perceptron and the multi-layer 

perceptron. One product of this analysis is a grounded basis for distinguishing between 

two categories of computational models—functionalist and physicalist—that differ in 

terms of their theoretical status. Specifically, functionalist models like the production 

system explicitly eschew theoretical commitments concerning the physical mechanisms 

that support cognitive processes and behavior. As a result, such models entail mutually 

exclusive hypotheses about the physical system. Since currently viable functionalist 

models cannot be falsified based on behavioral tests (they are in principle powerful 

enough to model any input-output behavior) and they cannot be falsified based on tests of 

their internal mechanisms (because they make no commitments in that regard), they 

cannot be evaluated scientifically and therefore should not be considered scientific 

theories of human cognition or behavior.
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In contrast to the functionalist symbolic models, to the extent that physicalist 

models like the ANN make specific commitments about the physical referents of their 

model components, they are—in principle—vulnerable to experimental test. In addition, 

the ANN results make it clear how ANNs bridge from neural mechanisms to behavior, 

suggesting that these models in particular are good candidates for conducting research 

linking brain to behavior using the method I proposed in the introductory chapter.

This analysis also generated several by-products. For example, within this 

framework it became clear why connectionists and symbolists often seem to be talking 

past one another in the literature—because often they are, in fact, when symbolists adopt 

a functionist stance regarding symbolic models and connectionists adopt a physicalist 

stance regarding the same models. In this case, the disconnect occurs because even 

though the two groups are talking about precisely the same model (e.g., a particular 

production system), they are nonetheless talking about two different theories 

(functionalist and physicalist, respectively) represented by that model. This important 

distinction between models and theories is supported by the analytic framework 

introduced here, but not by Marr’s “levels of explanation” framework.

I traced the source of this ambiguity to the way Marr’s levels of explanation are 

defined. A second by-product of the present analysis is therefore an identification of 

some problems with Marr’s framework (most importantly, that the “representation and 

algorithm” level cannot distinguish between qualitatively different implicit theories 

associated with a single explicit model) and proposals for revisions to help resolve these 

issues (in this case, by the introduction of an additional “virtual machine” level of 

explanation).
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Finally, the analytic framework is a very general tool supporting direct 

comparison of disparate neural, psychological, and behavioral theories within a single 

common frame of reference. By making it possible to distinguish clearly between 

instances wherein two theories are making common reference to an entity in the world 

and those where they are not, this tool should be useful for a wide variety of goals beyond 

those pursued here.

Identifying Candidate Neural Mechanisms
The second question associated with the use of computational models to

investigate brain-behavior links is how to identify promising neural mechanisms that can 

be used as a basis for inference to human neurology and behavior. One strategy 

demonstrated here is to apply my inter-theoretic framework to compare different theories 

or models of a common phenomenon and look for conflicts or inconsistencies that might 

point to mutually exclusive hypotheses that could serve as the basis for an empirical 

experiment. This strategy is demonstrated, for example, where I identified two mutually 

exclusive hypotheses about neural architecture as a result of my comparison of the 

hypothetical physicalist version of a production system and the multi-layer perceptron.

The crucial observation is that distributed representations exist at two levels in the 

neural system: internal structure and internal activity. In the physicalist production 

system, these two sets of representations contain the same information—they are 

basically copies of one another (even though they might have different formats). I call 

this mechanism “coordinated, equivalent, distributed representations” (CEDR). In the 

MLP, in contrast, the two sets of representations are coordinated, but they contain 

different information. I call this mechanism “coordinated, non-equivalent, distributed
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representations” (CNDR). These two mechanisms represent mutually exclusive 

hypotheses about neural organization and behavior. In the next paper I report on an 

experiment designed to distinguish experimentally between them.

In addition, this concrete case demonstrates the general strategy wherein my 

analytic framework can be applied to mine the database of extant theories and models in 

search of candidate neural mechanisms for further investigation.

Conclusions
The analytic framework described here was developed to address specific 

questions about the theoretical status and research utility of computational models. 

Primarily owing to its basis in philosophical materialism, however, the framework turns 

out to be much more widely applicable than I had originally conceived it to be. This 

generality is evident from the diverse applications and insights derived using the 

framework even within the context of this paper. These applications include an analysis 

of individual theories and models; a systematic comparison of disparate theories 

illuminating a number of interesting similarities and differences and producing a novel 

taxonomy of psychological theories; identification of problems with Marr’s levels of 

explanation (missing level of analysis, lack of symmetry at the behavioral and 

implementation ends); and insight into a source of possible disconnect in the current 

debate between connectionists and symbolists. In addition, I used the framework to 

identify a potentially important but non-obvious difference between the production 

system and the ANN which is that the former is not falsifiable while the latter is. Finally, 

the framework supported my search for hypotheses about neural mechanisms
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(CEDR7CNDR) that provide a basis for empirical experiments on causal brain-behavior 

relationships.

My hope is that through applications such as those described, this framework 

contributes to the development of a lingua franca for comparing and contrasting 

psychological theories, which will also support the construction of a meaningful 

taxonomy of psychological theories. One advantage of this particular framework is that it 

allows for the separation of model from theoretical commitment, so one can infer (or ask 

the theorist) what the underlying commitments are concerning the material basis of the 

theory. Once the analysis is completed, two types of theoretical entities can be 

distinguished: physicalist elements are exposed to falsifiability and functionalist elements 

are explicitly identified as being non-scientific placeholders until a physicalist 

commitment can be made. This suggests a more general strategy for making progress in 

cognitive science: treat functionalist accounts as placeholders until physicalist 

alternatives can be defined, and then evaluate or differentiate between them empirically 

when possible. In the next chapter, I attempt to do just that.
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Chapter 3 

Experimental Paradigm: Quantitative 
Methods for Testing Causal Brain-Behavior 
Links

Introduction
Behind any scientific study of education is a deeper question about how people 

learn. Schools are charged with constantly evolving responsibilities and goals, but 

ultimately their mission is to facilitate certain learning outcomes in their students. 

Knowledge acquisition is, at the most fundamental level, mediated by biological 

processes involving physical changes to a person’s nervous system (Bear, Connors, & 

Paradiso, 1996; Kandel, Schwartz, & Jessell, 2000), so neuroscience seems like a natural 

place to seek a scientific basis for educational theory and design principles. In recent 

years, in fact, there has been a great deal of interest in potential applications of 

neuroscience to education (Bransford, Brown, & Cocking, 2000; Bruer, 1997). 

Notwithstanding claims by zealous marketers and journalists, however, to date 

neuroscience has contributed very little of practical value to general education (Bruer, 

2002).

A major challenge facing researchers seeking to apply neuroscience to education 

is the problem of how to establish causal links between neuroscience mechanisms and 

behavioral patterns, since these phenomena exist at vastly different temporal, spatial, and 

organizational scales. Computer simulations of brain and mind, such as the connectionist 

artificial neural network (ANN) model, represent a powerful complement to direct 

experimentation in this area, because they provide a framework for integrating data from
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disparate paradigms and levels of analysis (in particular, from neural mechanism to 

observable behavior) into a single coherent model, and they allow researchers to simplify 

and control particular aspects of the model to explore its behavior systematically.

Psychologists have used connectionist models in their research for decades 

(McClelland & Rumelhart, 1986; Rumelhart & McClelland, 1986). The models 

frequently suggest non-obvious hypotheses about the mechanisms underlying behavioral 

patterns that can then be translated into the behavioral domain and investigated using 

standard methods of experimental psychology. However, when evaluating how well a 

computer model fits empirical data on people’s behavior, the dearth of quantitative 

methods available for formally testing model validity typically forces connectionist 

researchers to resort to informal comparisons between simulated data and human data1.

Typically, the logic of ANN model verification is based on positive 

demonstrations that a particular model is capable of generating a specific empirical data 

set. Moreover, attempts to falsify the overarching modeling framework itself (in the 

sense that the stimulus-response framework of behaviorism and the perceptron 

framework were falsified, for example) using empirical data and quantitative hypothesis 

tests are very rare, if not nonexistent. Given that educational researchers and 

practitioners are now making inferences about human learning and knowledge 

representation from these models and interpreting them to guide pedagogy and

1 Note that this is not a criticism o f  either artificial neural network models or the empirical methods 
employed when investigating hypotheses gleaned from such models. M y point here is that the methods 
whereby m odel behaviors typically are related to human behaviors are indirect and informal, because we 
lack powerful quantitative methods for directly testing model features against empirical human data. 
Specifically, I am talking about the methods available to ask questions such as: “Is this connectionist 
network an adequate model o f  that human behavior?” and “Is this A NN a better model o f  the human 
behavior in question than is a different computational model o f  the same behavior, such as a production 
system  or a different A NN?” Informal methods (i.e., methods not based on the logic o f  falsification) are 
typically used to address such questions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

106

assessment, we must develop empirical methods for assessing whether such inferences 

are valid before we gamble precious educational resources on them.

In this paper, I address the broad question, “How can ANN modeling frameworks 

(like the connectionist framework) be studied using the scientific logic of falsification (in 

particular, using empirical data and quantitative hypothesis tests)?” To operationalize 

this question, I have designed an experimental learning task and adapted it for use with 

connectionist ANNs and human subjects. I used the connectionist simulations to 

generate two precise predictions about learning behavior on the task, and then I tested 

those predictions empirically using learning data obtained from a sample o f adults 

performing the same learning task.

Two sections follow this introduction. In the first, I present the theoretical basis 

of my experiment and describe key aspects of the connectionist model and the predictions 

I have derived from it that are tested against human learning data. Following this, I 

describe the critical features of the experiment, including my sampling, procedures, 

measures, data analyses, and findings.

Background and Motivation: Computer Simulations and 
Learning Research

A major challenge facing researchers seeking to apply neuroscience to education 

is determining how to establish and validate causal links between neural mechanisms and 

behavioral patterns, since these phenomena exist at vastly different temporal, spatial, and 

organizational scales. This problem is compounded by the fact that invasive controlled 

experiments, which represent the most direct route to investigating brain-behavior 

relationships, cannot be conducted on people. While such experiments can be conducted 

using animal models, the higher cognitive functions most obviously relevant to education
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(such as language and mathematics) are unique to human beings, and as a result animal 

research can offer little—if any—insight into the neural mechanisms supporting these 

complex functions and their associated behaviors.

Direct experimentation is complemented powerfully by computer simulations in 

many research domains, such as astronomy, meteorology, economics, physics, 

mathematics, chemistry, and biology. Computer models become doubly important in 

domains where the phenomena are complex and direct experimentation is difficult or 

impossible, as in brain-behavior research in people. One computational model derived 

from neuroscience commonly used in psychology is the connectionist artificial neural 

network (ANN). In this modeling framework, researchers use networks of processing 

elements (nodes) inspired by biological nerve cells (neurons) to construct learning 

systems that can master a wide variety of tasks (cf. McClelland & Rumelhart, 1986).

In recent years, educators have begun using connectionist models to reason about 

human cognition (Bereiter, 1991; Schneider & Graham, 1992), making recommendations 

about pedagogy (Baker & Martin, 1998; Jones, Hill, & Coffee, 1998; Roth, 1992) and 

assessment (McKnight & Walberg, 1998; Papa, Shores, & Meyer, 1990; Perkins, Gupta,

& Tammana, 1995) based on network behavior. This shift from the theoretical domain of 

psychology to the more applied domain of education raises important issues concerning 

the validity of the connectionist ANN as a model of learning processes and knowledge 

organization in people. These issues have always lurked in the background of ANN 

research, but they quickly come to the fore when educational researchers propose to use 

these models to inform the design of educational materials, strategies, and environments
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to be used in schools, where the stakes are tangible and substantial. In my view, two

issues in particular become paramount in this context.

The first problem pervasive in the literature on ANNs and education stems from

the tendency to take the computational model as a starting point and freely interpret any

and all properties and behaviors of the model as representative of neural processing in

people (for example, see Andersen, 1999; Anderson & Donaldson, 1995; Anderson,

1992; Anderson & Conway, 1997; Baker & Martin, 1998; Baker, 1994; Roth, 1992). The

following example is typical of this process.

Roth (1992) analyzes the behavior of several connectionist ANNs learning to

solve balance beam tasks. Based on his analysis, he identifies a number of model

properties that appear to correlate with findings in science learning research:

These [balance beam] simulations show  the fo llow ing properties o f  A N N  m odels 
that are consistent with recent work on science learning but not yet sufficiently  
appreciated by many science educators and teachers.
1. Consistent with recent work on the relationship between rules and situated 
action .. ., A N N s learn to correctly solve problems without explicit rules as causal 
determinants o f  responses.
2. Consistent with work on scientists’ perceptions..., A N N s learned to perceive  
in prototypical w ays over time and in incremental ways.
3. Consistent with work in cognitive science, artificial intelligence, and bottom- 
up rob otics..., A N N s enact know ledge rather than store it. Patterns that 
correspond to know ledge are not found in an A N N , but in the activations that 
propagate through it.
4. C onsistent with psychological experiments involving human subjects...,
A N N s show  incremental and proximal developm ent.
5. Consistent with m y ow n observations o f  students in science laboratories...,
A N N s abstracted different patterns— that is, learned different concepts from the 
same set o f  materials (p. 72).

R oth  then  u se s  th ese  surface correlation s b e tw een  A N N  m o d el properties and o b serv ed  

human behavior to make recommendations for improving science teaching.

I do not mean to suggest that there is anything wrong with this particular example, 

or even with the general strategy it exemplifies. Indeed, in my opinion Roth’s analysis is
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one of the more thoughtful and interesting applications of ANNs to educational practice 

that I have seen. My point is that the analytic strategy exemplified here is very weak 

because it is based on surface correlations without any kind of formal validity test to back 

up the interpretations being made. At present, this strategy is very common because 

formal alternatives do not exist.

The problem with the informal strategy exemplified above is that while some 

model properties are likely valid representations of corresponding neurobiological 

properties, other model properties are definitely artifacts of the way the model is 

constructed and bear no relation to the neurobiological system. There is no principled 

way to distinguish the valid from the artifactual properties from within the model itself. 

That is, when researchers take a specific ANN model (or the more general modeling 

framework) as their point of departure for drawing inferences to people (as in the 

example), they have no grounded basis for distinguishing valid model properties from 

invalid model artifacts. It becomes very difficult (if not impossible) to make careful 

inferences from model behavior to human behavior under these conditions.

I wish to be very clear here. I am not saying that inferences from ANN models to 

human neurobiology using such methods as I have just described are necessarily false.

Nor am I arguing that the conclusions and interpretations derived from such inferences 

are necessarily wrong. My point is that these methods provide no direct evidence one 

way or the other supporting reasoned judgments about the truth or falsity of the 

conclusions. That is, the surface correlations and the conclusions drawn from them are 

just as likely to be false as they are to be true (if not more so). Without some kind of
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validity check, these “conclusions” are really “hypotheses” that require substantiation and 

validation before they should be used to inform educational designs.

On the positive side, it is possible that these kinds of informal and exploratory 

methods can produce novel insights and associated hypotheses that would not have been 

discovered using behavioral data alone (for example, by suggesting the kind of 

mechanism implicated in specific behavioral patterns such as those enumerated in the 

example above). In addition, such methods can be used as “proofs-by-example” to 

demonstrate that a system like an ANN is sufficiently powerful to produce a particular 

pattern of behavior that might seem to require more specialized—even innate— structures 

and processes (such as embedded clauses in language—see, for example, Elman, 1995).

If they support novel or improved educational designs, then the models could provide 

substantial practical benefits in education even when such informal methods are used. 

Without more rigorous arguments linking specific model properties to neurobiological 

mechanisms and more powerful methods of validation, however, model behaviors and 

properties are merely suggestive and speculative—they cannot really be taken seriously 

as evidence for or against any particular explanatory theory of neural function or 

behavior.

The second consideration from the standpoint of scientific validity is that 

connectionist researchers typically resort to informal (that is, ad hoc or post hoc) 

comparisons when validating their computer models against people’s behavior (see, for 

example, Elman et al., 1996; McClelland & Rumelhart, 1986; McLeod, Plunkett, &

Rolls, 1998; Quinn & Johnson, 1997; Rumelhart & McClelland, 1986), rarely designing 

true experiments, collecting quantitative data and conducting formal tests in an effort to
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falsify the hypothesized model—or, even more powerfully, to falsify the overarching 

modeling framework. In fact, there do not seem to be any general methods for testing the 

validity of ANN models in this way. This issue is linked to the previous one, in that 

before one can conduct a meaningful hypothesis test, one must first be able to state a 

meaningful, plausible, and testable hypothesis.

In this paper, I propose novel experimental methods for testing whether the 

simulated learning processes and internal representations of ANNs are indeed similar to 

those used by people. The general experimental approach involves four steps: 1) identify 

a neural mechanism, 2) embed the neural mechanism in an artificial neural network 

model, 3) generate behavioral predictions from the computational model, and 4) test the 

model predictions using data from human subjects. In this context, the computer 

simulations permit me to make precise a priori predictions. If such predictions are 

supported empirically, in an experimental setting, then the ANN model and/or modeling 

framework become more compelling and we gain insight into human cognition. If the 

predictions are not supported, then we learn something about the strengths and limitations 

of ANN models and can refine them. Either way, experiments such as the one I report on 

could inform our use of ANNs to generate cognitive theory and inform educational 

practice.

Identifying a Neural Mechanism: Coordinated, Non- 
Equivalent, Distributed Representations (CNDR)

ANN researchers make much of the fact that ANNs employ (spatially)

“distributed representations,” partly because this also seems to be a property of 

representations in the brain (Elman et al., 1996; Klahr & MacWhinney, 1998; McLeod et 

al., 1998). For example, consider an ANN that leams to take the present tense form of a
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verb as its input and produce the appropriate past tense form as its output. In the 

network, the knowledge necessary to convert a present tense form like “ring” into its past 

tense form “rang” would be distributed throughout the synaptic weights and node 

thresholds of the network instead of being stored in any one place. A “localist” 

representation of the rule for converting “ring” to “rang,” in contrast, would be stored in a 

single location separate from all other information (as it is, for example, in a grammar 

textbook). The problem is, it is difficult to define precisely what differentiates distributed 

representations from localist representations as defined in this way. Localist 

representations (such as the words on the page of a grammar textbook) are also spatially 

distributed, so being distributed in itself is not a distinguishing factor. Furthermore, 

many people doubt the biological plausibility of distributed representations as represented 

in connectionist ANNs (Elman et al., 1996; Klahr & MacWhinney, 1998). For these 

reasons, attempts to differentiate ANNs from other kinds of computational models (such 

as production systems) based on their distributed representations has not been very 

successful.

I argue that it is not the presence of distributed representations per se that is most 

interesting or important about ANNs. ANNs, like biological networks, employ two 

distinct types of distributed representations—distributed weights and distributed 

activations. When researchers refer to distributed representations in ANNs, they rarely 

specify which type they mean, although it can be inferred from context that they usually 

mean distributed patterns of activation (the basis for applied knowledge). In my view,
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what is interesting (and biologically plausible) about ANNs is the way these two types of 

distributed representations are coordinated2.

In particular, there are two possible ways to coordinate two sets of distributed 

representations3: 1) make the two sets of representations contain the same information 

(i.e., make them copies of one another), or 2) make the two sets of representations 

contain different information. To illustrate these two possibilities, imagine you have 

collected data on shoe size and math achievement from a number of children (Table 3.1).

Table 3.1: Imaginary data on children's shoe sizes and performance on a math achievement test

Subject ID Shoe size (in.) Math achievement
1 4 in. 8%
2 5 in. 19.5%
3 7.5 in. 48.25%
4 8.25 in. 56.875%
5 12 in. 100%

Using two sets of distributed representations, there are two ways these data could be 

stored:

Coordinated. Equivalent. Distributed Representations (CEDR): In this case, the 

two sets of distributed representations contain the same information, although perhaps in 

different formats (see Figure 3.1a). For example, if the data in Table 3.1 were entered 

into a spreadsheet on a computer, the spreadsheet loaded into RAM (working memory) 

would be like the activity-based representation. If the file were then saved, an exact copy 

of the spreadsheet contents would be copied from working memory onto the hard disk 

(long-term memory). The file stored on the computer’s hard disk would be analogous to 

the weight-based representation. In this scenario, these two sets of representations

2 See Bishop (1995) for a technical discussion o f these different types o f representations, which he calls 
non-parametric and semi-parametric.
3 See chapter 2 for a more thorough derivation o f this argument and the CEDR and CNDR mechanisms, 
and see chapter 4 for a more informal and accessible treatment o f them.
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Figure 3.1: Two ways to coordinate two sets of distributed representations: a)
both sets contain the same information (CEDR), or b) the two sets contain different 
information (CNDR).

a) Coordinated, Equivalent, Distributed b) Coordinated, Non-equivalent, 
Representations (CEDR) Distributed Representations (CNDR)
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5 12 in. 100% 5 12 in. 100%
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contain identical information—both store the set of data points listed in Table 3.1. These 

two sets of representations (the spreadsheet in RAM and the spreadsheet file on hard 

disk) are, for all intents and purposes, copies of one another4.

Coordinated. Non-equivalent. Distributed Representations (CNDR): In this 

scenario, the two sets of distributed representations contain different information (which 

goes beyond a superficial difference in formats). For example, the data in Table 3.1 

exhibit a perfectly linear relationship, so the contents of the table can be summarized 

without error using the linear equation:

Math_achievement = -38 + 11.5*Shoe_size 

This equation implicitly contains all of the information in Table 3.1 (and in addition, note 

that it automatically generalizes to other values of shoe size not in the original data set). 

When we want to work with the shoe size and math achievement data (in the activity- 

based representations) we need access to the numbers themselves, but this does not mean 

that we have to store those numbers in the weight-based representations for direct recall. 

Instead o f storing the table itself we could just as easily (if not more easily) store the 

linear equation parameters (intercept=-38 and slope=l 1.5) in the weight-based 

representations and use these to generate values of Math achievement on demand. These 

two sets of information (the slope and intercept on the one hand and the set of shoe size 

and math score pairs on the other) are clearly coordinated with one another, but they are 

also obviously not copies of one another (note that none of the numbers in the table bear

4 Note that connectionists would classify these two representations as "localist" instead of "distributed" 
because the document contents are stored more or less in one contiguous region o f RAM and/or hard disk, 
and each document is stored separately from all others. For present purposes, I want to shift attention from 
the "distributed" vs. "localist" debate (which I consider a red herring) and therefore I am defining 
"distributed" in the present context to mean simply "spatially distributed.”
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any relationship to the values of the slope and intercept)—they contain different 

information (Figure 3.1b).

I submit that the CNDR mechanism is a property of biological neural networks 

that is already embodied faithfully in the connectionist ANN model. In order to 

ameliorate the difficulties involved in inferring from model behavior to human behavior 

mentioned above, I propose to identify model properties and behaviors that are 

consequences of this mechanism and base my predictions about human learning only on 

them.

Generating Behavioral Predictions from the CNDR 
Mechanism Embedded in the ANN Model

Similarity Structure and the Shape of Learning in ANNs
ANN learning behavior is influenced by relationships among the items being 

learned, what researchers call the “similarity structure” of the task (see Elman et al.,

1996; Plunkett & Elman, 1997). Similarity structure has been implicated in numerous 

cognitive processes (Goldstone, 1999; James, 1890), including analogical reasoning 

(Gentner, 1983), concept formation and categorization (Goldstone, 1994), and knowledge 

transfer (Fischer & Farrar, 1987; Salomon & Perkins, 1989). As a result, many 

psychological theories incorporate some notion of similarity.

Many similarity-based theories have been criticized, however, for failing to 

specify an objective a priori similarity metric independent of subjective human (typically 

a posteriori) similarity judgments (Goldstone, 1999; Goodman, 1972; Salomon &

Perkins, 1989). For example, in knowledge transfer research, the “distance” of transfer is 

typically determined by the researcher’s subjective evaluation of how similar two 

application contexts are. Transferring knowledge of driving from a car to a rental truck is
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considered near transfer because the contexts are similar, whereas transferring strategies 

from chess to the business domain is considered fa r  transfer (Salomon & Perkins, 1989). 

Although these distinctions make intuitive sense, they can be problematic in practice 

because similarity in the outcome depends upon measures of transfer distance that are 

themselves based on subjective similarity judgments, creating a vicious circle.

Connectionist models provide new tools for posing questions involving similarity, 

allowing researchers to define the similarity structure of a stimulus set objectively, 

without reference to subjective human judgments, and then to ask questions about the 

relationship between this objective baseline and the subjectively perceived similarity 

structure. The relationship that a connectionist network establishes between objective 

and subjective similarity structure on a task is crucial to its performance and profoundly 

shapes its characteristic learning behavior. Moreover, the form this relationship takes is a 

direct consequence of the CNDR mechanism. I therefore exploit this feature of 

connectionist models (which appears to correlate with a property of biological neural 

networks) in my experimental design by identifying specific behavioral predictions that 

derive from it.

I use the connectionist simulations as the theoretical basis for generating two 

specific hypotheses about human behavior, one relating to the role of objective similarity 

structure in determining task complexity, and the other pertaining to the way subjective 

perceptions of stimulus similarity change as learning proceeds. Two challenges arise in 

connection with this goal. First, I must establish a framework for relating simulated data 

to empirical data from people. Second, I must define the similarity metric I propose to 

use to formalize my experimental hypotheses.
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Relating Simulation Behavior to Human Behavior
Connectionist model construction involves designing a stimulus set for use in 

training the ANN to perform a target task (Plunkett & Elman, 1997). For example, 

McClelland (1989) constructed a network that learned to solve balance beam problems 

(Inhelder & Piaget, 1958), and Seidenberg and McClelland (1989) designed a network 

that learned to “read aloud.” Basically, to achieve this, the modeler establishes a set of 

rules for converting human-friendly stimuli (balance beam problems, letter strings) into 

computer-friendly numerical codes.

As a concrete example of this process, consider the cartoon face in Figure 3.2.

This face can be characterized by the horizontal distance between the eyes (E) and the 

vertical extent of the face from lips to eyes (F). Beginning with this prototype, I 

systematically varied the values of E and F to create a set of related but distinct faces—a 

“face-space” (see Figure 3.3 for a caricature of the face space; the actual stimuli used in 

the experiment can be found in Appendix A). The values of E and F for each face serve 

as the numerical representation of the stimulus used to train the neural network.

In this example, I have specified a rule for converting a pictorial stimulus (a 

particular face) into the corresponding network input (numbers uniquely identifying that 

face) and vice-versa. This is a standard approach in connectionist modeling (Elman,

1990, 1993, 1995; Elman et al., 1996; McClelland & Rumelhart, 1986; McLeod et al., 

1998; Oliver, Johnson, Karmiloff-Smith, & Pennington, 2000; Plunkett & Elman, 1997; 

Quinn & Johnson, 1997). I used the actual face stimuli with human subjects in a learning 

task and the corresponding set of numerical stimuli with the connectionist network in an 

analogous simulated learning task. The rule that relates one to the other enables me to
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Figure 3.2: Prototypical experimental stimulus

E = Distance between eyes
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Figure 3.3: The “face-space” relating human stimuli to ANN stimuli
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translate between the simulated and real worlds and thus compare simulated to human 

data.

Defining an Objective Similarity (or Difference) Metric on the 
Face Space

Once the critical variables characterizing a stimulus have been identified and 

mapped to numerical values, it is straightforward to define a similarity metric on the set 

of stimuli. Since each stimulus can be identified by a point (E, F) in face-space, 

researchers often define the “difference” between two stimuli (which is the inverse of 

their “similarity”) as the Euclidean “distance” between the two corresponding points 

(Figure 3.4). In designing my experiment, I used this similarity construct to formalize 

and test two model predictions about learning and knowledge representation as described 

in the following sections.

Overview of the Model Predictions
To generate precise predictions that can be tested experimentally, I trained a 

connectionist network to perform a simple task. First, I divided the face-space arbitrarily 

into two halves to represent two types of imaginary creatures, called “Gorfs” and 

“Dimps” (Figure 3.5). The object of the task is to learn through experience with 

feedback to correctly identify the group membership of each stimulus (similar to the way 

a biology student might learn to distinguish frogs from toads by studying many labeled 

examples of each). On each trial, a face is presented to the network, the network 

indicates the type of creature it thinks the face represents, the correct answer is presented 

as feedback, and the network accommodates the feedback through incremental learning. 

Eventually, the network exhibits mastery of the task by categorizing all the faces 

correctly. In my analyses, I looked beyond this end-state performance to investigate
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Figure 3.4: Computing a Euclidean distance in face-space. The smaller the 
difference between two faces, the greater is their similarity.
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Figure 3.5: Face-space is divided to define two species of imaginary creatures
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whether the simulation follows a learning trajectory and constructs internal 

representations similar to those of people. To investigate these questions, I examined the 

behavior of the simulation and from that examination I generated two non-intuitive 

behavioral predictions causally related to the CNDR mechanism. I then tested these 

predications empirically in human learning.

Simulation Prediction #1: Some Stimuli Are Harder to Learn than Others
Why are some things harder to learn than others? The answer is undoubtedly very

complex, involving many interacting factors. Cognitive simulations can help us identify 

the individual factors involved and isolate them for focused study. For example, we 

might ask whether some faces in Figure 3.5 are harder to learn to categorize than others, 

and if so then what determines their relative complexity. At the outset, there are many 

plausible hypotheses, including one that predicts all the faces will be of equal difficulty. 

Based on my analysis of the connectionist simulation, I predict that stimuli near the 

category boundary are harder to learn than stimuli further away (see Figure 3.6), where 

distance is measured using the difference metric described previously, and subject 

reaction time is taken as an index of item difficulty (as is common—see Posner 1989).

The simulation makes a precise prediction about the relationship between reaction 

time5 and stimulus distance from the category boundary (Figure 3.6, top panel), during 

learning and even after mastery. In the simulation, reaction time drops off as the lower 

half of a negative logistic (“squashed-S”) function with distance from the category 

boundary. This specific functional form, however, depends on “mechanical” details of

5 The quantity graphed on the vertical axis in Figure 3.6 is not actually reaction time. It is a quantity called 
the network “error,” which reflects the certainty associated with the network’s response to a particular 
stimulus. Connectionist researchers generally assume this error measure is related to reaction time in 
people (McLeod et al., 1998; Seidenberg & McClelland, 1989), and I make the same assumption here.
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Figure 3.6: Predicted relationship between stimulus location in face-space 
and reaction time. The bottom panel is a graphic interpretation of the 
quantitative network data plotted in the top panel.
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the specific connectionist model that may not be mirrored identically in people 

(Anderson, 1995; Rolls & Treves, 1998). In addition, the state of the model can be 

“frozen” while its internal representations are probed to reveal this precise shape, 

whereas the internal state of human subjects is assumed to be in a constant state of 

dynamic activity and subject to various sources of noise not present in the model.

Initially, in my experiment, therefore, I first tested the hypothesis that on average, 

reaction time decreases with distance of the stimulus from the category boundary using a 

hypothesized linear model as a first approximation to the reaction time/distance 

relationship. I then examined the functional form of the relationship more carefully in an 

effort to infer something about its shape.

Simulation Prediction #2; Perceived Similarity Changes Systematically with 
Learning

While the first prediction addresses factors contributing to item difficulty, the 

second prediction pertains to the cognitive mechanisms actually involved in knowledge 

construction. That is, when people acquire new knowledge, how is that knowledge 

organized internally by the cognitive system? In the face-identification task, for example, 

each face and label might be stored as associated pairs of isolated facts, much like names 

and addresses in a personal organizer. The connectionist model, however, suggests a 

very different kind of organization, in which the critical structures are not the individual 

facts (faces and labels), but the face-space as a whole (Elman et al., 1996; Plunkett & 

Elman, 1997). The network exploits the fact that all the Gorfs are in one region and 

Dimps in another by constructing an internal version of face-space that is “warped” along 

the category boundary, pushing Gorfs one way and Dimps the other (Figure 3.7). This 

behavioral pattern is another direct consequence of the CNDR mechanism.
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Figure 3.7: Pairs of faces that are equally similar in face-space (left panel) 
are not represented internally as being equally similar by the connectionist 
simulation (right panel). The simulation masters the task by constructing an 
internal representation of face-space in which within-category differences are 
reduced and cross-category differences are exaggerated.

a) Externally Defined Face-Space b) Connectionist Internal
Representation of Face-Space
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Assuming that the biological equivalent of the network’s internal representations 

are the basis for our perceptions, the simulation predicts that stimuli within a single 

category will come to be perceived as increasingly similar to one another and 

increasingly different from stimuli in the alternate category as learning proceeds. To 

demonstrate this, I selected a target face from one category and two equidistant 

comparison faces—one from the same category and one from the alternate category (see 

Figure 3.7a). At intervals during the training of the neural network, I probed the 

simulation’s internal representations to determine its perceptions of the relative 

similarities of these two stimulus pairs. I found that the within-category difference 

becomes smaller and the cross-category difference becomes greater as learning proceeds 

(Figure 3.7b illustrates this abstractly, and Figure 3.8 plots actual simulation data).

Researchers have suggested that these simulated internal representations are like 

our own (Elman et al., 1996; McLeod et al., 1998; Spitzer, 1999). In my experiment, 

therefore, I investigated whether people’s perceptions of stimulus similarity change 

during learning in this way. The upper learning trajectory in Figure 3.8 looks a bit like a 

squashed letter “S” (i.e., it appears to have an approximately logistic functional form). In 

the previous case (Figure 3.6), the shape of the curve depended on the shape of the 

simulated node’s activation function. In this case, in contrast, the hypothesized 

functional form seems to depend more on the learning process than on specific structural 

details of the simulation such as the node activation function. However, the maximum 

duration of a single data collection session with humans is limited by exhaustion and 

boredom, so in this experiment only a part of the trajectory is traversed, which is likely to 

be approximately linear if this prediction is correct. In the analysis, therefore, I first test
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Figure 3.8: The connectionist simulation predicts that as learning proceeds, 
stimuli within a category will be perceived as increasingly similar to one another 
and increasingly dissimilar to stimuli in the alternate category
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using a hypothesized linear model, and then I look more closely at whether learning 

proceeds with a logistic (squashed “S”) trajectory.

Conclusion: Specific Research Questions
Broadly speaking, I would like to evaluate the validity of ANNs as tools for 

modeling human cognition using empirical data, quantitative methods, and the logic of 

falsification. In this initial study, I have used the connectionist framework to generate 

two testable predictions about human learning and knowledge. These predictions lead 

directly to two specific research questions that I have addressed empirically in a sample 

o f human adults:

• RQ1: After some learning has occurred on the categorization task in human 

adults, do reaction times decrease systematically with stimulus distance from the 

category boundary?

• RQ2: As human learning proceeds, do stimuli within a category come to be 

judged as increasingly similar to one another and less similar to stimuli in the 

alternate category?

Of course, there are important differences between the simulation and living 

subjects that could affect my results in ways unrelated to my research questions. First, I 

administer the experimental tasks via computer, which could add a level of complexity 

compared to a non-computerized version of the task for people less familiar with 

computer interfaces (Chua, Chen, & Wong, 1999; Goldberg, 2000; Rozell & W. L. 

Gardner, 1999). Second, research has revealed gender-related differences in computer 

use (Chua et al., 1999; Li, 2002; Turkle & Papert, 1991). Third, research has shown age- 

related effects on memory (Craik, 1986; Mead, Batsakes, Fisk, & Mykityshyn, 1999;
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Mitchell, Brown, & Murphy, 1990) and computer interaction (Chua et al., 1999; Czaja, 

1996; Mead et al., 1999) that could influence my results. I therefore controlled for these 

effects in my data analyses.

Research Design 

Sample
I recruited a convenience sample of 48 adults (26 female, 22 male) for the 

experiment (the recruiting flyer is in Appendix B and the permission form is in Appendix 

C). A convenience sample is appropriate since I am investigating what many researchers 

believe are universal properties o f human cognition (Elman et al., 1996; McLeod et al., 

1998; Spitzer, 1999). For the same reason, I did not anticipate systematic effects of 

major background variables. Nonetheless, for reasons discussed in my literature review,

I made an effort to recruit a sample diverse with respect to gender, age, and computer 

experience to ensure that any such variation is represented in the sample (the background 

questionnaire used to elicit this information is included in Appendix D).

In order to avoid excessive between-subject differences in learning due to 

ongoing cognitive development, I drew a sample o f adults over the age of twenty-one, as 

developmental psychologists have established that by this age people are generally 

capable o f formal or abstract reasoning (Fischer & Bidell, 1998; Flavell, Miller, & Miller, 

1993; Gruber & Voneche, 1995) and have undergone substantial frontal lobe maturation 

associated with executive function (Crown, 1996; Stuss, 1992).

Power analyses conducted with the OpDes software (designed by Congdon and 

Raudenbush, 2001, for conducting power analysis in multilevel analyses) suggested that a 

sample size of 50 subjects would permit me to detect moderate effects with a statistical
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power of .80 at the .05 alpha-level (Raudenbush & Liu, 2001). Both experimental tasks 

were implemented using the DMDX software package (Forster & Forster, 2003).

Prediction #1: Item Difficulty Varies as a Nonlinear 
Function of Distance from the Category Boundary

Procedures
I devised a game-like task (described previously) in which a subject must learn 

category membership (“G orf’ or “Dimp”) for each face in a stimulus set through trial- 

and-error. On each “categorical” trial (Figure 3.9), a randomly selected stimulus is 

presented via computer to a subject briefly (400 ms). The subject responds by pressing 

one of two buttons to indicate their response. If the subject does not respond within 5 

seconds, the trial times out and is logged as “no response.” After each response (or 

timeout), the subject receives feedback indicating the correct response (750 ms). This 

procedure is repeated for four hundred trials (divided into four equal blocks, with five 

presentations of the entire set of twenty stimuli in each block).

Measures

Outcomes
In addressing RQ#1,1 am testing whether some faces are harder to categorize than 

others. On each categorical trial, therefore, I recorded the subject’s reaction time (RT) in 

milliseconds as the outcome measure. The simulation predicts a nonlinear reaction time 

curve with characteristics of a decreasing exponential (see Figure 3.6), and therefore I 

transformed the reaction time data using the natural log function to linearize this variable. 

In all of my analyses for this research question, I used ln(RT) as the outcome variable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

133

Figure 3.9: Structure of a category learning trial. A face is presented for 400 msec 
and then blanked out. Subject reaction time is measured from the time of stimulus onset 
until a key is pressed. After user responds, the correct answer is presented as feedback 
for 750 msec.
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Predictors
For categorical judgments, the predictor measures the Euclidean distance of the 

stimulus from the category boundary in face-space (DIST). I did not collect data on 

reaction times for stimuli lying directly on the category boundary (DIST=0). In my 

analyses, therefore, I centered the DIST variable on the first meaningful value closest to 

the category boundary (DIST-1) so that the intercept parameter in the models could be 

interpreted directly.

Controls
There are four control variables: (a) subject’s age in months, re-centered on 25 

years = 300 months (AGE -  300), (b) subject gender (FEMALE, an indicator variable),

(c) the number of years that the subject has owned a personal computer, re-centered on 10 

years (COMP YRS-10), and (d) the average number of hours per week the subject has 

spent using a computer during the past year, re-centered on 20 hours per week 

(COMP HRS - 20). The centered values were chosen to make the parameters easier to 

interpret, assuming a typical subject is twenty-five years old, has owned a computer for a 

decade, and engages in moderate computer use between two and three hours per day on 

average throughout the week.

Data Analysis
RQ l: After some learning has occurred on the categorization task in human adults, do 

reaction times decrease systematically with stimulus distance from the category 

boundary?
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Based on the learning behavior of the ANN simulation on the experimental task, I 

hypothesized that the relationship between DIST and ln(RT) would follow a linear 

level-1 model for individual human subjects, as follows:

ln(RTij) = 7t0i + 7rii(DISTj -1 )  + sy

Where:
ln(RTjj) = Natural log of reaction time for subject i on stimulus j  and is a linear function 
of the distance of item j  from the category boundary (DISTj)

7Toi = True natural log of reaction time for individual i when assessing a stimulus one unit 
away from the category boundary—that is, a stimulus with DIST=1 (level-1 intercept)

71 n = True difference in the natural log of reaction time per unit of distance in stimulus 
space for individual i (level-1 slope)

Sjj = Level-1 residual for individual i on stimulus j

c E2 = Level-1 residual variance across all occasions of measurement, for individual i in 
the population

At level-2,1 specified a model to represent differences across individuals in the

population in the level-1 intercept and slope, as follows:

rtoi = Yoo + yoi(AGEj-300) + y02(FEMALEj) + yo3(COMP_YRSj-10) + 
y04(COMP_HRSi-20) + ^0i

tci j = y10 + yn(AGEj-300) + yi2(FEMALEj) + yi3(COMP_YRSi-10) + 
yi4(COMP_HRSi-20) + $n

Where:
yoo = Population average true natural log of reaction time for a stimulus one unit away 
from the category boundary for a twenty-five year old male who has owned a personal 
computer for ten years and has used a computer twenty hours per week on average for the 
past calendar year

Yoi through yo4: Difference in population average true natural log of reaction time for a 
stimulus one unit away from the category boundary between subjects one unit apart on 
the associated level-2 variable, controlling for the other level-2 variables. For example:

Yoi = Difference in population average true natural log of reaction time for 
a stimulus one unit away from the category boundary for subjects one 
month apart in age, controlling for gender, years of computer ownership, 
and average weekly computer use over the past calendar year
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^0i = Level-2 residual on natural log of reaction time for individual i when assessing a 
stimulus one unit away from the category boundary, controlling for age, gender, years of 
computer ownership and average computer use over the last calendar year

ao = Population residual variance of intercept %oi, controlling for age, gender, years of 
computer ownership and average computer use over the last calendar year

yio = Population average true rate of change in natural log of reaction time per unit of 
distance in stimulus space for a twenty-five year old male who has owned a personal 
computer for ten years and has used a computer twenty hours per week on average for the 
past calendar year

Yi i through Difference in population average true rate of change in natural log of 
reaction time per unit distance in stimulus space between subjects one unit apart on the 
associated level-2 variable, controlling for the other level-2 variables. For example:

Y11 = Difference in population average true rate of change in natural log of 
reaction time per unit distance in stimulus space for subjects one month 
apart in age, controlling for gender, years of computer ownership, and 
average weekly computer use over the past calendar year

= Level-2 residual on average rate of change in natural log o f reaction time for 
individual i when assessing a stimulus one unit away from the category boundary, 
controlling for age, gender, years of computer ownership and average computer use over 
the last calendar year

a\2 = Population residual variance of rate of change Tin, controlling for age, gender, years 
of computer ownership and average computer use over the last calendar year

My prediction is that the natural log of reaction time for people decreases linearly 

with increasing distance of the stimulus from the category boundary (recall Figure 3.6), 

operationalized here as the hypothesis that yio < 0. Therefore, to answer my research 

question I fit the hypothesized multilevel model to my experimental data and tested the 

null hypothesis Ho: Yio= 0- A rejection of Ho plus a negative sign on yio will be 

interpreted as evidence that the connectionist prediction (and by extension the 

connectionist model) is supported by the empirical evidence.

To address this research question, I fitted a hierarchy of nested multi-level 

regression models to the data based on the basic model specified above (see Appendix E 

for the full taxonomy of models). First, I fit the level-1 unconditional growth model as a
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baseline for comparison. Next, I added all the level-2 predictors as a group (that is, I fit 

the level-2 model just as it is described above). As a group, the level-2 control variables 

did not significantly improve the fit of the model. Next, I examined the two-way 

interactions between the level-1 predictor DIST and each of the level-2 control variables. 

The only significant interaction at the a = .05 significance level was the interaction 

between DIST and COMP_HRS. As a result, I removed the control variables AGE, 

FEMALE, and COMP_YRS to produce the final level-2 model6, which includes the 

level-1 predictor DIST, the level-2 control COMP HRS, and the interaction between 

them. The presence of the interaction term complicates the model, so I use prototypical 

plots to aid in the presentation of the findings. These plots illustrate the effect on 

ln(RT)xDIST as COMP_HRS varies from 5 hours (10th percentile) to 60 hours (90th 

percentile).

Results
Table 3.2 summarizes the results of fitting a nested hierarchy of multi-level 

regression models to the data for research question #1 (the main taxonomy is included in 

Appendix E). The leftmost column of the table lists the names of model components, 

organized into three groups: fixed effects (naming the parameters associated with the 

structural model components), variance components (naming the stochastic model 

components), and goodness-of-fit (including the -2 log likelihood goodness-of-fit statistic 

and the between- and within-person pseudo-R statistics). Each row of the table thus 

contains a set of fitted values for a single model parameter across the different fitted

6 1 tested the stability o f  this final model by examining the effect o f adding the control variables in various 
combinations. In particular, the DISTxFEMALE interaction was marginally significant on its own so I 
tried adding FEMALE to the final model as a main effect and also in the DISTxFEMALE interaction. As 
shown in Appendix E, none o f  the additional models I examined changed the final result qualitatively.
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Table 3.2: Unconditional growth and final fitted linear multilevel models describing the relationship 
between ln(reaction time) in a dichotomous categorization task and the distance of the stimulus from 
the category boundary, controlling for subject's computer experience (average hours/week) and the 
interaction between stimulus distance and computer experience (subjects=48, observations=959).

Model
U nconditional Final

G row th M odel

Fixed Effects

Intercept 6.7285****
(0.03396)

6.7033****
(0.04109)

(DIST-1) -0.0845****
(0.009748)

-0.07093****

(0.01178)

(COMPHRS-20) 0.002023

(0.001865)

(DIST- 1)*(COMP_HRS-20) -0.00109*
(0.000534)

Variance
Components

ae2 0.09112**** 0.0907****

O o2 0.04624**** 0.04614****

a i2 0.000 0.000
Goodness-of-fit

pseudo-Rg 0.076 0.080

pseudo-Ro2 0.002

pseudo-Ri
-2LL 528.9

0.000
524.7

Key: ~ p<.10; * p<.05; ** p< 01; *** p<.001; **** p< 0001
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models. For the fixed effects, in parentheses below each parameter estimate is the 

associated standard error.

Two fitted models are represented in the remaining columns. The middle column 

describes the unconditional growth model, which includes the level-1 intercept and the 

main predictor DIST, both of which are statistically significant (p < .0001). The 

rightmost column describes the final model, which is the model I found that explained the 

most variance in ln(RT) with the least number of predictor variables. In addition to the 

level-1 intercept and main predictor, the final model also includes a statistically 

significant interaction between DIST and COMP_HRS (p < .05). The values of pseudo- 

Re2 in Table 3.2 suggest that about 7.6% of the within-person variation in ln(RT) is 

explained by the main level-1 predictor DIST (pseudo-Re = .076 for the unconditional 

growth model compared to the unconditional means model, shown in the first column of 

the table in Appendix E) and that this does not change much with the addition of the 

level-2 control variables (pseudo-Re2 = .080 for the final model), as expected. 

Approximately 0.2% of the between-person variation in the level-1 intercept is explained 

with the addition of the level-2 predictor COMP HRS and its interaction with DIST in 

the final model compared to the unconditional growth model (pseudo-Ro2 = .002). The 

level-2 variance component associated with the true rate of change (oi = .000) is not 

statistically significant in the unconditional growth model, suggesting that there is no 

residual variance in true rate of change to be explained with the addition of level-2 

parameters (consequently, pseudo-Ri = .000, suggesting no additional vanance in true 

rate of change is explained by the addition of the level-2 predictors).
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The final model includes a statistically significant interaction between the main 

predictor DIST and the control variable COMP HRS (p < 0.05). The effect of the main 

predictor DIST on the outcome ln(RT) varies according to the value of COMP_HRS.

The fitted slope of this interaction is -.00109 which means that on average in this sample 

o f subjects, each additional hour of weekly computer use is associated with a difference 

of -.00109 in ln(RT) between stimuli located one unit of distance apart (moving 

perpendicular to and away from the category boundary). In other words, more computer 

use is associated on average with a greater decrease in reaction time between stimuli near 

the category boundary and those far away. The main effect of DIST (slope = -.07093, p 

< .0001) is the average difference in ln(RT) for two successively distant stimuli for a 

subject who spent an average of 20 hours per week using a computer in the past calendar 

year (COMP_HRS = 20).

The statistical interaction complicates the model interpretation because its 

presence means there is no single effect of the question predictor. To facilitate the 

presentation, therefore, I have chosen to display the findings as a set of fitted 

relationships between the untransformed outcome and the question predictor for several 

substantively interesting values of the control variable (Figure 3.10). On the horizontal 

axis I plot the distance of a stimulus from the category boundary. On the vertical axis I 

plot the predicted reaction time in response to the stimulus. Fitted curves of the 

untransformed outcome variable RT vs. the main predictor DIST are shown in Figure 

3.10 for three representative values of COMP_HRS: 10th percentile (5 hrs.), average 

(32.4375 hrs.), and 90th percentile (60 hrs.). The relationship is curvilinear (taking the
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Figure 3.10: Predicted reaction times as a function of distance from the category 
boundary by average number of hours of computer use per week
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form of a decaying exponential) although the curvature is very slight7. The effect of 

computer experience is evident in the different slopes of the RTxDIST curves for 

different values of COMP_HRS. As the graph shows, more computer experience is 

associated with steeper reaction time curves. In other words, regular computer use seems 

to have a differential effect on different stimuli as a function of distance from the 

category boundary.

For the prototypical “low computer use” subject (COMP HRS = 5), the average 

reaction time in response to stimuli close to the category boundary (DIST=1) is about 

790ms, and reaction times decrease on average for stimuli further away. The difference 

in reaction times between stimuli close to the category boundary (DIST=1) compared to 

those furthest away (DIST=4) is about 120ms on average. For the prototypical “high 

computer use” subject (COMP_HRS = 60), the average reaction time for stimuli closest 

to the category boundary is about 880ms. This prototypical subject responds more slowly 

on average to stimuli near the category boundary than the “low computer use” subject. 

However, the difference in average reaction times for stimuli closest to and furthest away 

from the category boundary for this prototypical subject is more than twice that o f the 

“low computer use” subject (257ms). In summary, the prototypical subject with high 

computer use does not respond uniformly faster than the subject with low computer use 

on all stimuli (as might be expected). He responds faster on average only to the stimuli 

furthest away from the category boundary. Instead, the pattern of results suggests that the

7 Although the curvature is so slight that it is difficult to see upon visual inspection o f Figure 3.10, the 
level-1 residuals are less heteroskedastic and more normal in the final model with the transformed output 
(ln(RT)) compared to a model with the same predictors but untransformed output (RT). In the final model 
reported here, the level-1 residuals still have a heavy upper tail, but otherwise they look reasonably 
homoskedastic and normal (see Appendix F).
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high computer use subject’s reaction times are more sensitive to stimulus distance from 

the category boundary.

Prediction #2: Perception of Visual Similarity Changes 
as a Function of Category Learning

Procedures
At the beginning of the experiment and after each block o f one hundred 

categorical trials, I inserted a special block of twenty-two “similarity” trials to probe the 

subject’s internal representation of the task similarity structure over time, as learning 

proceeds (Figure 3.11). On each similarity trial, I selected a target stimulus from one 

category (Gorf or Dimp) and a comparison stimulus from each category. The comparison 

stimuli were selected so that they are equidistant from the target stimulus in face-space. 

On each similarity trial, the target stimulus is presented to the subject briefly (1.5 sec), 

and then two comparison stimuli appear simultaneously to the right and left (for an 

additional 2 sec). The subject is instructed to press the arrow button (right or left) 

pointing toward the picture that looks most like the one in the middle. If a subject does 

not respond after 5 seconds, the trial times out and is marked as “no response.”

Measures

Outcomes
In addressing RQ#2,1 tested whether perceptions of stimulus similarity change as 

learning proceeds. On each similarity trial, I therefore recorded the subject’s similarity 

judgment (SIM). Similarity judgments occur in blocks of 22 trials, on each of which the 

subject must decide which of two comparison stimuli (OBJ1 or OBJ2) is most similar to 

a target stimulus. OBJ1 is from the same category as the target, while OBJ2 is from the 

opposite category. If the subject selects OBJ1 then SIM = 1, otherwise SIM = 0. For
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Figure 3.11: Structure of a similarity judgment trial. A face is presented for 
1.5sec and then comparison faces are placed on either side of it for 2.0sec. 
Subjects respond by pressing an arrow pointing toward the face that looks most 
like the center face.

Target: 1500 ms

.Comparison: 2000~r!Ts

User Reaction Time
(max 5000ms)
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data analysis, I took the average value of SIM for each block of 22 trials, which is the 

fraction of trials on which OBJ1 was deemed most similar to the target (FRSAM E):

22

FRSA M E = £ s i M k/ 22
k = l

I treated FRSA M E as my outcome.

Predictors
For similarity trials, the predictor is TIME, recorded as the similarity block 

number (TIME=0 is the similarity block at the start of training, before any category 

learning has occurred, and TIME=4 is the last similarity block after the category training 

ends; the others are evenly spaced between blocks of categorical trials).

Controls
The same four control variables are used in this analysis as for the first prediction, 

centered on the same values (AGE-300, FEMALE, COMPYRS-IO, and CO M PHRS- 

20).

Data Analysis
RQ2: As human learning proceeds, do stimuli within a category come to be judged as 

increasingly similar to one another and less similar to stimuli in the alternate category? 

To address RQ#2,1 represented the relationship between FR_SAME and TIME

by specifying a logistic level-1 model for individual subjects, as follows:

F R _ S  A M E jj = __________________ 1______________  +  sy

1 +  exp[-(7t0j +  7tii*TIMEjj)]

Where:
F R _ S A M E jj  is a continuous variable representing the fraction of trials on which the 
within-category stimulus, OBJ1, is deemed more similar to the target stimulus than is the 
cross-category stimulus, OBJ2, for individual i on trial j ; it is a logistic function o f T I M E 8

8 Note that FR SAME is a continuous variable created by averaging over blocks o f  22 individual binary 
responses for each subject on each measurement occasion. Logistic models are usually created using the
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7toi determines the intercept, which is the true fraction of time OBJ1 is deemed more 
similar to the target stimulus on trial 0 (that is, before training) for individual i

tc i j determines the slope at midpoint, which is the true rate of change in FR_SAME for 
individual i at mid-point

Sij is the level-1 residual for individual i on trial j

a E is the level-1 residual variance across all occasions of measurement, for individual i in 
the population

At level-2,1 specified a model to represent differences across individuals in the

population in the level-1 parameters, as follows:

7toi = yoo +  Y o i(A G E j-3 0 0 )  +  yo2( F E M A L E i)  +  y o 3 (C O M P _ Y R S j-1 0 )  +  

Yo4( C O M P _ H R S i- 1 0 )  +  ^oi

TCii =  Yio +  Y ii(A G E j-3 0 0 )  +  y i2( F E M A L E i)  +  Yi3( C O M P _ Y R S i- 1 0 )  +  

Yi4( C O M P _ H R S i- 2 0 )  +  ^

Where:
Y o o  = Population average true value of 7i o i ,  which determines the level-1 intercept, for a 
twenty-five year old male who has owned a personal computer for ten years and has used 
a computer twenty hours per week on average for the past calendar year

Y o i  through Y 0 4 :  Difference in population average true value of 7t o ,  between subjects one 
unit apart on the associated level-2 variable, controlling for the other level-2 variables

H,0i = Level-2 residual on value of 7t0i for individual controlling for age, gender, years of 
computer ownership and average computer use over the last calendar year

ao2 = Population residual variance of TCoi, controlling for age, gender, years of computer 
ownership and average computer use over the last calendar year

Y i o =  Population average true rate of change of r a n  (which determines the rate of change 
of FRSA M E at midpoint) per block of trials for a twenty-five year old male who has 
owned a personal computer for ten years and has used a computer twenty hours per week 
on average for the past calendar year

Y 1 1  through Y 1 4 :  Difference in population average true rate of change of 7in per unit time 
(block of 100 categorical trials) between subjects one unit apart on the associated level-2 
variable, controlling for the other level-2 variables. For example:

Y 1 1  = Difference in population average true rate of change of tz\\ per unit 
time (block of 100 categorical trials) for subjects one month apart in age,

raw binary data. However, SAS V8 does not seem to support logistic nonlinear mixed models using 
dichotomous data at the observation level while also allowing for residuals at two different levels 
(observation level and individual level, in this case). I therefore had to first convert the binary data into 
probabilities to create a logistic nonlinear mixed model.
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controlling for gender, years of computer ownership, and average weekly 
computer use over the past calendar year

£,ii = Level-2 residual on average rate of change of 71 u per block of trials for individual i, 
controlling for age, gender, years of computer ownership and average computer use over 
the last calendar year

a 2 = Population residual variance of ttu, controlling for age, gender, years of computer 
ownership and average computer use over the last calendar year

My prediction is that FR_SAME will increase over time on average, 

operationalized here as the hypothesis that yio > 0. To answer my research question, I fit 

the multilevel model to data and tested the null hypothesis Ho: yio = 0. A rejection of Ho 

combined with a positive sign on yio will be interpreted as evidence supporting the 

connectionist model.

To address this research question, I fitted a hierarchy of nested multi-level 

regression models to the data based on the basic model specified above. First, I fit the 

level-1 unconditional growth model as a baseline for comparison. Next, I added each 

control variable as a main effect and simultaneously as a two-way interaction with the 

level-1 predictor TIME. The only significant effect at the a  =.05 significance level was 

the TIMExAGE interaction9. Therefore, the final model includes the level-1 predictor 

TIME, the level-2 control AGE, and the interaction between the two (TIMExAGE). The 

presence of the interaction term complicates the model, so I use prototypical plots to aid 

in the presentation of the findings.

Results
Table 3.3 summarizes the results of fitting a nested hierarchy of multi-level 

logistic models to the data for research question #2 (see Appendix G for the main

9 The main effect o f  COM PHRS was marginally significant, but this effect disappeared when both 
COM PHRS and AGE were included in the model, suggesting the two predictors share variance (which is 
consistent with the Pearson correlation coefficient between COMP HRS and AGE, which is p = -.48).
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Table 3.3: Unconditional and final fitted logistic models describing the 
relationship between fraction of within-category pairs selected in a visual 
similarity judgment task and time (while learning was taking place) controlling for 
subject's age and the interaction between time and age (subjects=48, 
observations=240).

Model

U nconditional
G row th

Final
Model

Fixed E ffects

Intercept -0.04474
(0.05229)

-0 .1468-
(0.07756)

TIME 0.1192**
(0.03479)

0.2041***
(0.05102)

(AGE-300) 0 .000599-
(0.000344)

TIME*(AGE-300) -0.0005*
(0.000223)

V ariance C o m p o n en ts

0.008634**** 0.008616****

°o2 0.04355 0.03559

0.04049** 0.03545**

Goodness-of-fit

pseudo-Re 0.403 0.404

pseudo-Ro 0.183

pseudo-Ri
-2LL -338.3

0.124
-344.3

Key: ~ p<.1; * p<.05; ** p<. 01; *** p<,001; **** p<0001
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taxonomy). Table 3.3 is organized in the same way as Table 3.2; only the parameter 

names have changed.

The middle column describes the unconditional growth model, which includes the 

level-1 intercept (which is not significant at the .05 level) and the main predictor TIME (p 

< .001). The rightmost column describes the final model, which is the model I found that 

explained the most variance in FR SAME with the least number of predictor variables.

In addition to the level-1 intercept and main predictor, the final model also includes a 

statistically significant interaction between TIME and AGE (p < .05). The values of 

pseudo-Re2 in Table 3.3 suggest that about 40.3% of the within-person variation in 

FRJSAME is explained by the main level-1 predictor TIME (pseudo-Re2 = .403 for the 

unconditional growth model compared to the unconditional means model, shown in the 

first column of the table in Appendix G) and that this does not change with the addition 

of the level-2 control variables (pseudo-Re2 = -404 for the final model), as expected. 

Approximately 18.3% of the between-person variation in the level-1 parameter that 

determines the intercept and 12.4% of the between-person variation in the level-1 

parameter that determines the slope at midpoint is explained with the addition of the 

level-2 predictor AGE and its interaction with TIME in the final model compared to the 

unconditional growth model (pseudo-Ro2 = .183 and pseudo-Ri2 = .124, respectively).

The final model includes a statistically significant interaction between the main 

level-1 predictor TIME and the level-2 control variable AGE (p < 0.05). This means that 

there is no single main effect of the primary predictor TIME on the outcome 

FR_SAME—this effect varies according to the value of AGE. The fitted slope of this 

interaction is -.0005 which means that on average in this sample of subjects, each
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additional month of age is associated with a difference of -.0005 in the parameter that 

determines the slope of FR_SAME as a function of TIME. In other words, greater age is 

associated on average with less positive (or more negative) differences in FR SAME at 

two successive sample intervals. The parameter determining the logistic intercept is not 

statistically significant in either model, which suggests that the fitted probability before 

training (at TIME=0) is not significantly different from 0.5 in either model.

The statistical interaction complicates the model interpretation because its 

presence means there is no single effect of the question predictor. To facilitate the 

presentation, therefore, I have chosen to display the findings as a set of fitted 

relationships between the outcome and the question predictor for several substantively 

interesting values of the control variable (Figure 3.12). On the horizontal axis I plot 

TIME. On the vertical axis I plot FR SAME, which is the fraction of similarity 

judgment trials presented in that block on which the subject selected the within-category 

pair of stimuli as being more visually similar than the cross-category pair. Fitted curves 

of the outcome variable FR SAME vs. the main predictor TIME are shown in Figure 

3.12 for three representative values of AGE: 10th percentile (25 years; 3 months), average 

(39 years; 2 months), and 90th percentile (65 years; 6 months). The relationship is 

technically curvilinear (logistic10), but the data only range over a very linear portion of 

the curve.

The effect of age is evident in the different slopes of the FR_S AMExTIME curves 

for different values of AGE; as the graph shows, greater age is associated with decreased 

slopes. The prototypical “young” subject exhibited the predicted pattern, in which the

10 The only assumption on the logistic model is that the sample log-odds of the outcome (FR SAME) is a 
linear function o f the predictor (TIME). This assumption seems to hold in this case (see graph in Appendix 
H o f the log odds o f  FR SAME vs. TIME).
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Figure 3.12: Fitted trajectories of change during learning, for prototypical 
subjects, in the fraction of trials on which a same-category pair was identified as 
being more similar than a cross-category pair in a visual similarity judgment task
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probability of selecting a within-category pair of stimuli as being more visually similar 

than an equally distant cross-category pair increases over time as learning of the 

categories proceeds. The prototypical “old” subject, on the other hand, did not show this 

pattern; instead of increasing (as predicted), the probability of selecting a within-category 

pair actually decreased slightly as the category training proceeded.

Discussion
The empirical results are consistent with both main ANN predictions. In the first 

case, reaction times are significantly longer for stimuli closer to the category boundary 

and shorter for stimuli further away, as predicted. Moreover, the use of a logarithmic 

transform on the outcome improves the model fit and the distribution of residuals 

compared to a linear model, which is consistent with the prediction about the form of the 

relationship (lower half of a negative logistic, or “squashed-S” function). The curves in 

Figure 3.10 are only slightly curvilinear, but this is not surprising given the relatively 

short learning time in the experiment compared to the simulation (400 trials for people 

compared to 5000 trials for the ANN). In particular, if  the people were trained until they 

mastered all the stimuli as the ANN was, then I would expect (based on the first ANN 

model prediction) the curvilinearity of the reaction time curves to be more pronounced. 

This prediction could be investigated further by conducting an experiment in which the 

training continued until the stimuli were mastered or over-learned. It might even be 

possible to examine individual response curves in that case, since presumably the 

representations underlying the task performance would become much more stable at that 

point than they are early in the learning process.
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Second, residual analysis indicates that the residual distribution has a long 

positive tail, but that the distribution looks more normal when the reaction time data is 

log transformed. The presence of a long tail was not predicted but is not surprising, given 

that reaction time data exhibit a floor effect (there is a limit on how quickly someone can 

respond, but no limit on how slowly she can respond).

One possible explanation for what is going on is that there could be two different 

underlying processes at work. In my experiment, the stimulus is presented for a short 

duration (400 msec), followed by a blank screen, during which time the subject is 

supposed to respond by categorizing the stimulus. Research on visual processing 

suggests that it takes a fraction of a second to identify the stimulus (Welford, 1980), and 

that visual stimuli are then maintained in a visual memory buffer for a while after the 

stimulus disappears. Estimates of this duration vary, but most researchers estimate this 

time to be under a second (Averbach & Sperling, 1961; Kosslyn, 1994; Sperling, 1960).

It is possible that responses within the period during which the stimulus is either present 

or maintained in the visual buffer (or other short term memory buffer) will follow one 

distribution, and any responses made after the stimulus has leaked away engage different 

decision processes and therefore are drawn from a different distribution. It is plausible 

that people with less computer experience (who also tend to be the older subjects) would 

take longer to respond, either because they are less used to this kind of limited-time 

interaction, or because their unfamiliarity with computer interfaces and keyboards 

imposes a greater cognitive load on them compared to the more computer experienced 

subjects, which could contribute to a systematically slower response pattern. This slower 

response pattern would tend to push their response delays more often beyond the duration
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of stimulus maintenance in the visual buffer, producing the observed pattern in the data. 

This effect could be further investigated or perhaps reduced by lengthening presentation 

time of the stimulus, training to complete mastery of the task, and/or providing more 

extensive initial training to prepare all subjects for the perhaps unfamiliar requirement of 

responding rapidly to a visual stimulus.

In the case of the second prediction, the fraction of same-category pairs chosen in 

the similarity judgment task increases on average over time with learning across the 

sample, as predicted (although the fitted curves for the oldest subjects in the sample 

became flat or even slightly negative). In addition, the logistic intercept is not 

significantly different from a probability of 0.5 (at TIME=0, which is before any training) 

after controlling for subject age and the interaction between age and time. In other 

words, subjects were just as likely on average to judge cross-category pairs of stimuli 

more visually similar than same-category pairs before any training on the underlying 

categories (controlling for age and the interaction between age and time). This finding is 

consistent with the assumption that these stimuli and categories are novel and have no 

intrinsic categorical structure (that is, there is no a priori bias to cluster particular groups 

of faces together).

For the similarity judgment task, the ANN predicted that the growth curves would 

be logistic between a probability of 0.5 before training and a probability of 1.0 after the 

task was mastered (note that this deviates from the more common scenario where the 

logistic relationship is assumed to range from 0.0 to 1.0). In the fitted model, the 

insignificance of the intercept parameter and positive sign of the growth parameter are 

consistent with this prediction, but the fitted curves in Figure 3.12 look more linear than
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might be expected based on the prediction. One possible factor contributing to the 

linearity of the curves in this region of the trajectory is the functional form used for the 

statistical model. I was unable to fit the data with the ideal logistic functional form 

(which would have estimated the lower and/or upper asymptotes of the curve, depending 

on the sign of its growth parameter), in part because the data only cover part of the 

growth trajectory and in part because such models tend to be very unstable with even 

moderately noisy data. I used instead the familiar logistic function ranging from 0.0 to 

1.0 to model the data in order to estimate the direction of growth and test the significance 

of the intercept, which is not significantly different from 0.5, controlling for age and the 

age-time interaction. A logistic function ranging from 0.0 to 1.0 and having an intercept 

of 0.5 is necessarily very linear in an interval around TIME=0. I was therefore unable to 

generate any evidence one way or the other on the shape of the growth trajectory in that 

region for this task for comparison to the ANN prediction.

The form of the interaction between time and age in this analysis suggests that on 

average, younger people tended to have a higher rate of increase in probability of 

selecting the same-category pairs in the similarity judgment task as time progressed 

compared to the older people. This could be an effect of age on learning the categories, 

and if so this effect could either operate directly (for example, due to the effects o f age on 

neurology) or indirectly (for example, because older people had a harder time learning 

under these conditions with time-limited exposure, or because of increased cognitive load 

due to unfamiliarity with computer interfaces and input devices). This issue could be 

investigated further and possibly ameliorated in future studies by looking at longer 

training periods and/or increasing the stimulus presentation duration. If all subjects were
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trained to mastery, for instance, based on the ANN prediction I would expect the older 

subjects to follow the same general trajectory as younger subjects on average but perhaps 

shifted in time and/or with a slower growth rate.

Implications
The main purpose of this study was to explore how computational modeling 

frameworks (such as the connectionist ANN framework) can be exposed to falsification 

through formal hypothesis tests involving empirical data. I began with the hypothesis 

that human brains employ a CNDR neural mechanism in learning novel categories. I 

used a computational model (ANN) embodying this neural mechanism to generate two 

behavioral predictions. I tested the behavioral predictions following from the neural 

hypothesis using human learning data and quantitative methods (multi-level regression 

models). The major findings are all consistent with the predictions, which means that we 

cannot reject the human-CNDR hypothesis based on this study.

A secondary purpose of this study was to demonstrate the feasibility of using 

ANNs in this particular way as part of a scientific method for researching causal brain- 

behavior relationships. Based on the results of this study, I would say this approach is 

not only feasible, but quite promising. The CNDR hypothesis is based on observations 

about the mammalian nervous system, the logic connecting the biological mechanism to 

the ANN is made explicit, the effects of the CNDR mechanism at the “neural” level in 

the ANN are traced to specific “behavioral” patterns caused by it in the ANN, and there 

is an explicit logic linking model behavior to human behavior (through the formal 

specification of a mapping from the face stimuli to their coordinates in face-space).
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Critics can always take issue with any step of this argument, of course, but this is 

precisely the point; I have attempted to explicate and justify the logic at every step along 

the way to expose the process to refinement or refutation grounded in evidence from 

analytic and empirical methods in order to move closer to an accurate theory of brain- 

behavior links.

Moreover, the novel experimental paradigm and the novel application of 

statistical analysis to link ANN model predictions to human data demonstrates one way 

to fill an important gap in the domain of brain-behavior research. Specifically, much 

more use could be made of computational models like the ANNs used here if  they were 

part of a systematic, explicit scientific research process instead of being limited to 

theoretical exploration, hypothesis generation, and thought experiments, as is far more 

common (although these are also very valuable applications of the models). The design 

described in this study provides one experimental paradigm and one set of methods that 

can be applied together as I have shown to move closer to that goal.

Finally, this experiment serves as a concrete case study demonstrating how this 

approach can be realized in practice, and how it fits into the larger research frameworks 

(the basic brain-behavior research method and the applied educational neuroscience 

research framework) that are the main focus of this dissertation. Each component of this 

design (experimental paradigm, CNDR neural mechanism, ANN model, predictions, 

statistical modeling applied to cognitive and microgenetic data) could potentially be 

applied to investigate many other questions, some generated during the course o f this 

study and others far removed. For example, the methods could be adapted to investigate 

how different strategies used by subjects relate to the reaction time data, to investigate the
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relationship between reaction time data and response accuracy, to study whether subjects’ 

subjective reports of their behavior predict their actual behavioral data, and to explore 

whether the human and simulated data can be used to understand more about how they 

relate to one another (for example, how a unit of simulation time corresponds with a unit 

of human time).

The educational implications of this study are necessarily speculative and would 

require independent evaluation if used to inform practice, as I argued in the dissertation 

introduction. There are a number of interesting insights and possibilities, however. For 

example, what appears to be the “same” task given to a group of people from the 

perspective of the teacher (or experimenter in this case) is not necessarily the same task 

from the perspective of the students (or subjects). This general point is intuitively 

obvious, perhaps, to anyone who has ever taught, but the methods employed in this study 

could potentially enable researchers and teachers to sharpen and formalize their intuitions 

on this point to manage this aspect of teaching more effectively.

In the present study, I thought initially that the parameters of the task were 

transparent enough that virtually everyone would approach it in roughly the same way— 

in particular, using more or less the same or equivalent visual information as the basis for 

their categorization strategies (since I designed the stimuli systematically by varying two 

dimensions). This was not the case, however, as I discovered in post-experimental 

interviews (which I only allude to here, since these data were not formally part of this 

initial study but were collected primarily to help contextualize the quantitative data and 

inform revisions to the experimental design for future studies—see Appendix I for the 

post-experimental questionnaire).
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From the ANN perspective, this learning problem always involves two integrated 

dimensions o f information (the face height and head shape). From the human 

perspective, people evidently experienced it in a variety of ways. Some reported seeing it 

as a one-dimensional problem (for example, using only head shape to make their 

categorical decisions), some described a two-dimensional strategy where two “rules” 

were applied sequentially (for example, “look at the head shape, and if that is not 

definitive then look at the expression”), and some described strategies that integrated two 

dimensions into a single decision rule like the ANN did (for example, using a complex 

“feature” o f the faces such as emotional valence). In some cases, people used several 

rules (more than two), and in others people reported using one or more rules and 

memorizing the “exceptional” faces that they found difficult. This task clearly generated 

a rich set of response strategies.

The educational insight is that if a task this straightforward elicits such diverse 

strategies, then there are probably few tasks used in schools that are as well controlled as 

teachers might desire or expect. On the positive side, the diversity was not infinite. Most 

subjects noticed and used head size (or distance between the eyes), often in conjunction 

with one or more other salient (and relevant) features. Moreover, although subjects used 

many different labels for their strategies, some relied on essentially the same information 

drawn from a different source (for instance, forehead size covaries with the 

“scrunchiness” of the facial features and with the height of the chin), so these can be 

equated with one another. Some strategies are just variations on a single theme using 

different labels, such as strategies based on nice vs. mean faces, or approachable vs. 

avoidable faces, or female vs. male faces, or friendly vs. scary faces.
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The task was specifically designed to be two dimensional. It should be possible, 

therefore, to organize all strategies into a set of categories based on whether they use one 

or two dimensional strategies. The two-dimensional strategies can then be further 

differentiated into sequential (multiple one-dimensional rules) or integrated (a single two- 

dimensional rule). The resulting categories can be differentiated still further to deal with 

strategies involving more than two rules and those explicitly identifying exceptions to 

any of the specified rules. This kind of approach would preserve the meaningful 

variability while providing tools for limiting and managing the complexity of strategy 

profiles. The experimental paradigm and task domains used in this experiment seem 

promising for investigating educational issues such as these more explicitly.

A more direct implication of the current study is insight into why a set of items 

that should be uniformly difficult (or easy) to learn might not be. In this study, for 

example, it might seem obvious a priori that all the faces should be equally difficult to 

learn, but the results of the experiment suggest that the difficulty o f learning the correct 

category membership for a given face varies systematically with the distance of that face 

from the category boundary. In my mind, the interesting point highlighted by the current 

experimental design is that the item difficulties are not necessarily due to any intrinsic 

properties of the items themselves—instead, they emerge through an interaction between 

the intrinsic relationships among the items, the category structure imposed externally on 

the set of items, and properties of the learner’s nervous system. Just recognizing the 

existence of this set of relationships could be the basis for a useful educational design 

principle, and the more we understand about these relationships in isolation and in 

relation to one another, the more powerful these design principles would be likely to be.
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Another implication of this study derives from the second behavioral prediction, 

about the effect of learning on perception of similarity. Understanding this mechanism 

could help us to understand at least one aspect of how previous learning influences future 

learning. In other words, if one effect of learning a set of categories is to change 

systematically our perceptions of visual similarity, this would be a very interesting 

mechanism. It could be useful, for example, to help curriculum designers extend their 

thinking beyond the problem of what content should be included in a lesson to thinking 

also about how that content should be organized in time to capitalize on the cumulative 

effects o f previous learning on students’ perceptions of new material. The most obvious 

domains where the effect on visual perceptions might be useful are domains with a strong 

visual component, such as fine art or art history. If this effect of the CNDR mechanism 

operates in the visual modality, however, it very likely operates in the other sensory 

modalities as well, so the research program and any useful educational principles could 

very likely be generalized quickly to these other spheres.

Any study involving cognitive simulations inherits some limitations o f those 

methods. In particular, it is often difficult to know what inferences are valid from the 

simulation to human cognition (Churchland, 1988; Gershenfeld, 1999; MacDonald & 

MacDonald, 1995). I believe that the methods described here represent an incremental 

advance in addressing this problem by providing a way to suppress the idiosyncratic 

details o f simulated learning trajectories and foregrounding more abstract general 

characteristics of model behavior that can be compared to empirical data from people 

using statistical hypothesis testing. Whether this approach can be generalized to other 

paradigms and domains is a question for future study.
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Since this is the first study of its kind, I have proposed a novel experimental task 

that is not clearly related to real educational content. I did this to maximize experimental 

control over many extraneous variables while I tested the proposed methods and 

hypotheses. This is common practice in learning experiments (see, for example, Bruner, 

Goodnow, & Austin, 1956), and I expect the results and conclusions can be generalized 

eventually to more relevant educational content.

At the very least, it should be possible to apply this experimental paradigm to 

more natural kinds o f tasks— for example, to investigate the conceptual organization 

induced by a particular curriculum. In particular, the experimental task was specifically 

designed so that a dichotomous category structure (Gorf vs. Dimp) is being imposed upon 

a continuous underlying space of stimuli (the face-space, which varies continuously along 

two dimensions—head width and distance from mouth to eyes). The effects I 

investigated in the experiment arise from interactions between these two different 

“similarity structures”—one inherent and perceptual (the visual similarities between 

faces) and the other arbitrary and conceptual (the arbitrary category labels imposed on the 

stimuli).

Several educationally relevant task domains have a similar kind of structure, 

where continuous perceptual dimensions interact with more abstract or conceptual 

dichotomous categories. For example, in music theory the notes on a musical staff are 

arranged according to the continuous perceptual dimension of pitch—higher pitches are 

located higher on the staff. Imposed on this continuous dimension o f pitch are discrete 

octave categories, in which, for instance, all of the “C” notes o f different pitches are 

grouped together into a single category. The interaction of the continuous dimension of
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pitch with the dichotomous dimension of octave category could have implications for 

learning music theory, and in particular could have implications for how it should be 

taught. The experimental paradigm in the present study could be used to investigate the 

structure of music theory knowledge induced by different curricula and teaching 

techniques. Similarly, the periodic table in chemistry is organized according to an 

underlying continuous dimension of atomic weight, upon which is imposed a set of 

discrete functional categories (noble gases, +1 valence, -1 valence, rare earth metals, etc.) 

depending on such attributes as the number of valence electrons available in the outer 

energy shell. In addition, categorical species distinctions in biology (e.g., dog, cat, 

human) are imposed on a more continuous space o f genetic differences (every human has 

a unique genome). As these examples illustrate, many educationally relevant domains or 

sub-domains are structured like the experimental task at an abstract level and could 

therefore be studied using similar methods.

The present study suggests that one non-obvious source of complexity in 

knowledge domains such as these could be the interaction of the continuous and 

categorical organizing dimensions, which might make some individual items more 

difficult to learn than others even though the items appear on the surface to be highly 

uniform (for example, two elements next to each other on the periodic table). This effect 

could operate even in the most rudimentary learning scenarios, for example by making 

some elements of the periodic table more difficult to memorize and more prone to errors 

during recall than others.
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Conclusions
Psychologists have used computer simulations in their research for decades.

Some proponents of the approach have conceptualized it as an empirical (rather than 

experimental) paradigm having little use for standard statistical techniques because of its 

focus on the complex, history-dependent details of individual (not group) behavior 

(Newell & Simon, 1972). In my opinion, however, the practical utility o f these models 

has been limited because researchers have paid insufficient attention to the question of 

how model predictions can be tested formally against empirical data in ways that expose 

the modeling paradigms themselves to falsification.

In this study, therefore, I have described methods for testing predictions from a 

connectionist model using empirical learning data from a sample of people. These 

methods leverage certain strengths of process models, such as their ability to capture 

individual learning trajectories (Newell & Simon, 1972), while making them accessible 

to standard statistical techniques. I expect that this methodology could be extended to 

other types o f learning and other kinds of hypotheses.

In addition, the outcome of this study has implications for the larger 

neuroscience-education debate going on in the field. In particular, if  human learning 

behavior is significantly shaped by similarity structure as predicted by the CNDR neural 

mechanism embedded in the connectionist model, then this represents a glimpse into a 

powerful and rather direct neurobiological constraint on observable learning behavior 

(that is, this would represent a concrete brain-behavior link), contradicting claims that it 

is not possible to link neurobiology directly to educationally relevant issues (Bruer,

1997). In one way or another, I hope this study will contribute incrementally to the larger
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effort underway to establish a scientific basis for education grounded in studies of the 

brain and mind, both methodologically and substantively.

In my mind, the study described here is just the first small step into a very large 

research territory, with potentially far-reaching implications, many of which have 

educational relevance. For example, the ANN sensitivity to similarity structure has been 

linked theoretically to knowledge transfer (Connell, 2002; Plunkett & Elman, 1997), 

learning and development (Anderson, 1995; Elman et al., 1996; McLeod et al., 1998), 

affect and motivation (Fischer & Connell, 2003; Sutton & Barto, 1998), learning 

disabilities (Cohen, Sudhalter, Landon-Jimenez, & Keogh, 1993; Oliver et al., 2000;

Plaut & Shallice, 1993), and the structure of internal representations (Quinn & Johnson, 

1997). I expect that the kind of research proposed here will help us “reverse-engineer” 

such phenomena, thereby suggesting innovative, scientifically grounded design principles 

for effective educational interventions and assessments. In the next chapter, I discuss 

how the brain-behavior link investigated in this experimental study can be linked to 

educationally relevant theory. I illustrate the process with a concrete example linking the 

CNDR neural mechanism to behavioral patterns associated with knowledge transfer.
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Chapter 4 

Educational Implications: Neural Models of 
Knowledge Transfer

Introduction
Until recently, the domains of neuroscience and psychology evolved largely 

independently of one another (Bruer, 1999a). In particular, purely psychological and 

cognitive theories have rarely incorporated neurological constraints (but see James, 1890 

for a notable early exception). This theoretical separation between brain and mind 

generally rests on the assumption that brain properties do not “show through” to the 

psychological and behavioral levels (e.g., Simon, 1992), which leads people to conclude 

that theories of mental function can be developed independently of theories of brain 

function (Marr, 1982). In this paper, I challenge the common assumption that 

psychological theories are or can be theoretically insulated from neural considerations.

My argument is based on a comparative analysis illustrating how two mutually exclusive 

assumptions about brain mechanisms support qualitatively different theories of 

psychological and behavioral phenomena, using knowledge transfer as a concrete 

example.

Theoretical Background
For the purposes of this discussion, the only relevant neuroscience finding is the 

generic observation that the brain employs two distinct mechanisms to store knowledge: 

synapses and activity patterns (Figure 4.1). The biological details of how these 

mechanisms operate and how they differ from each other are interesting in their own 

right, but they would merely complicate without facilitating the present analysis. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

167

Figure 4.1: Two different mechanisms employed by the nervous system to store 
knowledge: a) synapses (stable patterns of physical connections between neurons); b) 
dynamic patterns of neural activity (e.g., spike trains)

b) Activity patterns

a) Synapses

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

168

interested reader can find information on this subject in any neuroscience textbook1 (see, 

for example, Bear, Connors, & Paradiso, 1996; Kandel, Schwartz, & Jessell, 2000).

This simple fact about the nervous system suggests a very straightforward 

question: How might the information encoded in synapses be related to the information 

encoded in activity patterns? Logically speaking, there are a number of possible ways 

that two sets of representations could be related to one another. For example, the two 

different systems could simply be a means for the brain to double its information storage 

capacity (like adding an additional hard drive to a personal computer), in which case the 

content stored in the two sets of representations could be completely independent of each 

other (the same way computer files stored on two separate hard drives are independent of 

one another). This scenario is logically possible but not very plausible physiologically. 

Synaptic representations are comparatively durable but inflexible, while activity-based 

representations are flexible but short-lived. These qualitative differences between the 

two systems make it unlikely that they are interchangeable. More importantly, this 

possibility is not very interesting for present purposes because it does not have any 

obvious implications for psychological or behavioral phenomena. The interesting 

configurations of a two-mechanism information storage system (like the nervous system) 

are those wherein the two sets of representations are coordinated and therefore constrain 

each other in some way.

Two possible ways to coordinate two sets of distributed representations2 are: 1) to 

make the two sets of representations contain the same information (i.e., make them copies 

of one another), or 2) to make the two sets of representations contain different (but

1 In Chapter 2 I also give a brief overview o f the two kinds o f representations.
2 See Chapter 2 for a more formal and thorough derivation o f this argument.
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interdependent) information. To illustrate these two possibilities, imagine you have 

collected data on shoe size and math achievement from a number of children (Table 4.1).

Table 4.1: Imaginary data on children's shoe sizes and performance on a math achievement test.

1 4 in. 8%
2 5 in. 19.5%
3 7.5 in. 48.25%
4 8.25 in. 56.875%
5 12 in. 100%

Using two sets of distributed representations, there are two distinct ways these data could 

be stored in an information processing system (whether it is a brain, a digital computer, 

or some other kind of device):

Coordinated. Equivalent. Distributed Representations (CEDR): In this case, the 

two sets of distributed representations contain the same information, although perhaps in 

different formats (see Figure 4.2a). For example, if  the data in Table 4.1 were entered 

into a spreadsheet on a computer, the spreadsheet loaded into the computer’s random 

access memory (or RAM, which is the computer’s working memory) would be like the 

activity-based representation. If the file were then saved, an exact copy o f the 

spreadsheet contents would be copied from RAM onto the hard disk (the computer’s 

long-term memory). The file stored on the computer’s hard disk would be analogous to 

the synapse-based representation. In this scenario, these two sets of representations 

contain identical information—both veridically store the set of data points listed in Table 

4.1. These two sets of representations (the spreadsheet in RAM and the spreadsheet file 

on hard disk) are, for all intents and purposes, copies of one another.

Coordinated. Non-equivalent. Distributed Representations (CNDR): In this 

configuration, the two sets of distributed representations contain different (but 

interdependent) information. For example, note that the data in Table 4.1 exhibit a
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Figure 4.2: Two ways to coordinate two sets of distributed representations: a)
both sets contain the same information (CEDR), or b) the two sets contain different 
information (CNDR).

a) Coordinated, Equivalent, Distributed 
Representations (CEDR)

b) Coordinated, Non-equivalent, 
Distributed Representations (CNDR)

1 4 in. 8%
2 5 in. 19.5%
3 7.5 in. 48.25%
4 8.25 in. 56.875%
5 12 in. 100%

CEDR

Activity-based 
distributed reps

1 4 in. 8%
2 5 in. 19.5%
3 7.5 in. 48.25%
4 8.25 in. 56.875%
5 12 in. 100%

Synapse-based 
distributed reps

1 4 in. 8%
2 5 in. 19.5%
3 7.5 in. 48.25%
4 8.25 in. 56.875%
5 12 in. 100%

- CNDR

Linear equation: 
a = -38 (intercept)
P = 11.5 (slope)
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perfectly linear relationship. The contents of the table can be summarized without error 

using the linear equation:

Math_achievement = -38 + 11.5*Shoe_size 

This equation implicitly contains all of the information in Table 4.1. When we want to 

work with the shoe size and math achievement data (in the activity-based representations) 

we need access to the actual numbers themselves, but this does not mean that we have to 

store those numbers directly in the synaptic representations for direct recall. Instead of 

storing the table itself we could just as easily (if not more easily) store the linear equation 

parameters (intercept=-38 and slope=l 1.5) in the weight-based representations and use 

these to generate values of Math_achievement on demand, given particular values of 

Shoe_size3. These two sets of information (the slope and intercept on the one hand and 

the shoe size and math score pairs on the other hand) are clearly coordinated with one 

another (the equation parameters generate the numerical values and vice versa), but they 

are also obviously not copies of one another (for example, note that none of the 

individual numbers in the table bears any relationship to the values of the slope and 

intercept). This example illustrates concretely how the two sets o f representations in a 

CNDR system can be coordinated with one another and yet can contain completely 

different information (Figure 4.2b).

3 Note that I am not suggesting the linear relationship is stored explicitly in the system in such a way that 
the rule itself needs to be recalled to consciousness before it can be used. Instead, the neural circuitry  
would embody the generative equation. The person (if we think for a moment in terms o f the CNDR 
mechanism operating in a human nervous system) would have no direct access to the rule itself; she would 
only have access to the number facts that it produces in the activation patterns. One implication o f  this fact 
is that the CEDR and CNDR mechanisms would not necessarily be distinguishable using self-report data 
since people would only have access to one o f the two sets o f  representations (the activation patterns) in 
either case. Note, however, that a lack o f conscious access to contents of synaptic representations does not 
necessarily imply that these representations can be treated independently o f  the activity-level content that is 
consciously accessible.
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Research Question
In the previous section I described two different mechanisms whereby two sets of 

distributed representations could be coordinated: CEDR and CNDR. These two 

mechanisms represent mutually exclusive hypotheses about brain organization, based on 

the single neuroscience finding that the brain uses two distinct systems to store 

knowledge (synapses and activation patterns). These two hypotheses are the point of 

departure for the research question that is the main focus of this analysis: Do different 

assumptions about the brain support qualitatively different theories o f particular 

psychological and/or behavioral phenomena? I f  so, then how?

In the following sections I argue that different assumptions at the neural level do, 

in fact, have differential implications for theories of psychological and behavioral 

phenomena. I ground the analysis concretely by showing how the two neural hypotheses 

lead to different theories of learning, recall, and knowledge transfer.

Analysis
I make two assumptions in the following analysis:

1) Synaptic representations are more durable than those encoded in activation 

patterns, but the synaptic representations are not directly accessible for 

processing (including not being available to conscious processes)

2) Activity-based representations are transient, but they can be processed 

flexibly and in some cases made accessible to consciousness

Knowledge Acquisition and Knowledge Application
At the most basic level, the two neural hypotheses imply different models of 

knowledge acquisition (learning) and recall. The CEDR mechanism implies a “storage”
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or “container” model of knowledge representation (Figure 4.3), in which the senses 

provide a constant stream of information in the form of activation patterns, some of 

which are selectively “saved” into the synaptic representations for long term storage. The 

information stored in the synaptic representations is durable but cannot be manipulated 

directly. During the recall or application phase, therefore, knowledge must first be 

copied into the more flexible dynamic activation patterns (working memory) for recall 

and processing. The “container” metaphor is appropriate for this kind of mechanism 

(Figure 4.3b), where the knowledge being stored is the “object,” the synaptic 

representations (long-term memory) constitute the “container” where these knowledge 

objects are stored, and the processes of learning and recall are analogous to the actions of 

placing objects into and removing objects from the container, respectively.

A concrete example is a spreadsheet being manipulated on a digital computer 

(Figure 4.3c). Each data element (e.g., each value of shoe size) is stored in its own 

spreadsheet cell; the cell contents are individual knowledge objects. The copy of the 

spreadsheet stored in RAM contains a set of objects that have been removed from the 

synaptic “container” for manipulation. When the spreadsheet is saved, the knowledge 

objects in the spreadsheet cells are copied directly to a file on the hard drive, which is 

analogous to placing the objects in the storage container.

The CNDR mechanism, in contrast, supports a “machine” or “generative” model 

of knowledge representation (Figures 4.4 and 4.5). Knowledge is not “stored” explicitly 

in this kind of system. Instead, related patterns of activation (inputs and outputs) are held 

in the working memory (activity patterns) providing an example of the kind of “machine” 

that is required at the synaptic level.
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Figure 4.3: Learning and recall in a CEDR system. Three views on the CEDR mechanism: a) two sets of distributed 
representations (synaptic and activity-based) containing the same information; b) the “container” metaphor, in which knowledge 
objects are moved in and out of long-term storage; c) a real-world example of a CEDR mechanism is a spreadsheet on a 
computer. Learning, in this system, is a process of copying the contents of activity-based representations directly into synaptic 
representations for long-term storage. Stored knowledge is recalled by copying it back from synaptic representations into the 
activity-based representations for processing and application.

a) CEDR Mechanism

Activity-based representations

Synaptic representations

b) Container Metaphor
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in working 
memory

c) Example: Computer Spreadsheet
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Figure 4.4: Learning in a CNDR system. Three views on the CNDR learning mechanism: a) two sets of distributed 
representations (synaptic and activity-based) containing different information; b) the “machine” metaphor, in which knowledge is 
stored implicitly in the form of a machine that converts input to outputs on demand; and c) a real-world example of a CNDR 
mechanism is a linear regression equation summarizing a relationship between two (or more) variables (inputs and outputs). 
Learning, in this system, is a process of using input-output pairs as prototypes to build a machine (neural circuit) embodying the 
input-output relationship implicitly.
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Figure 4.5: Recall in a CNDR system. Three views on the CNDR recall mechanism: a) two sets of distributed representations 
(synaptic and activity-based) containing different information; b) the “machine” metaphor, in which the appropriate output is 
generated anew each time an input is fed into the machine; and c) a real-world example of a CNDR recall mechanism is a linear 
regression equation to which an input has been applied to produce the associated output. Recall, in this system, is a process of 
feeding inputs to the appropriate neural circuit (machine) to re-generate the desired outputs (knowledge) on demand.
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By analogy, imagine an inventor who wants to go into business manufacturing 

widgets. He would approach an engineer with a sample (or description) o f the raw 

material (e.g., molten plastic) and a prototype of the final product (e.g., a spherical 

widget) and ask the engineer to design a machine that converts the raw material into 

finished products like the prototype (Figure 4.4b). This scenario is analogous to the 

learning and recall model in the CNDR system. The raw materials correspond to inputs 

(e.g., sensory stimuli), the widgets correspond to outputs (e.g., motor responses), the 

process o f machine design is the process of learning, and the machine itself is a neural 

circuit that is constructed by changing synaptic connections. Importantly, the product of 

learning in this model is not the explicit knowledge that is being represented (the 

widget)—in contrast to the CEDR / container model. Instead, the product o f learning is a 

machine capable of generating specific knowledge (widgets) on demand, given 

appropriate inputs (raw materials). During each recall episode, the inputs are fed into the 

neural machine and the appropriate outputs are generated anew (Figure 4.5b).

As a concrete example of the CNDR mechanism in action, consider again the 

math achievement data set. In this model, the individual cells are not treated as 

independent knowledge objects as they were in the container model. Instead, each shoe 

size measure and its associated math achievement score are treated as a prototype input- 

output pair. The product of learning is a neural circuit (machine) that produces the 

appropriate math achievement score as its output (widget) when a shoe size measurement 

(raw material) is fed into it (Figure 4.4c). The machine, in this case, takes the form of an 

input-output relationship (equation) embodied directly in the neural tissue, produced by 

learning processes that change synaptic connections (equation parameters) the way a
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machine design engineer would take standard components (gears, motors, etc.) and 

connect them together in specific novel configurations (analogous to changing synaptic 

connections) to produce a machine exhibiting the desired input-output behavior. The 

CNDR recall process in this example (Figure 4.5c) would involve feeding a shoe size 

measure as input (raw material) into the neural circuit (machine) to generate the 

associated math achievement score (widget). This example focuses on a single simple 

machine to simplify the discussion. In a CNDR system at the scale of the human brain, 

there would be many, many billions of such machines connected together into larger 

networks where one machine’s inputs could come from the outputs o f many other 

machines and its outputs could in turn potentially be fed as inputs into many other 

machines. The natural extension of the machine analogy in this case is to multi-stage 

processes in a factory utilizing many machines, or even to a series of factories involved in 

converting raw materials into final products.

Knowledge Transfer
As the discussion in the preceding section illustrates, the two neural hypotheses 

(CEDR and CNDR) clearly support qualitatively different theories of learning and recall. 

The question is whether these differences are isolated at the neural level, or whether they 

“show through” in some way to the levels of psychological and behavioral phenomena.

To address this question, I examine the educationally relevant phenomenon of knowledge 

transfer to provide a concrete example illustrating how psychological- and behavioral- 

level theories o f such phenomena are sensitive to underlying (explicit or implicit) neural 

assumptions.
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Knowledge transfer is the process of applying knowledge learned in one context 

(for example, addition learned in a classroom setting) to a different context (for example, 

to calculate the total cost of a group of items in a store based on the prices of the 

individual items). Transfer has been a focus of psychological inquiry since at least the 

beginning o f the twentieth century, because it is important to a wide range of phenomena 

in cognitive science generally and education specifically. In particular, knowledge 

transfer must happen for a student to apply almost anything learned in a classroom 

context to a real-world situation.

Classically, psychologists have defined knowledge transfer in terms of two main 

variables: distance (how far?) and amount (how much?). Transfer distance is typically 

defined in terms of a continuum from “near” to “far,” depending on how different the 

context o f learning is from the context of application. For example, learning to drive a 

car and then being able to drive a rental truck with little or no additional training is a case 

of near transfer because the two task contexts are quite similar. Learning to play chess 

and then applying chess principles (e.g., “material advantage” or “control of the center”) 

to business situations (e.g., in planning a hostile takeover or selecting a site to locate a 

store, respectively) would be examples of far transfer (Salomon & Perkins, 1989).

Transfer amount is typically operationalized by assessing how much the 

knowledge acquired in the learning context facilitates performance in the application 

context. For example, a study might examine the extent to which learning a 

programming language facilitates performance on specific deductive reasoning tasks 

compared to a control condition in which no such training is provided.
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Despite its importance and decades of focused attention, however, transfer 

continues to be a puzzling phenomenon. In particular, researchers have failed to produce 

widely applicable general principles about transfer (Fischer & Farrar, 1987), and there are 

many contradictory findings on transfer reported in the literature (Salomon & Perkins, 

1989). Because of these difficulties, some application-minded researchers have 

advocated shifting the focus away from the theoretical questions of how transfer operates 

and onto more practical issues, such as the conditions and behaviors that facilitate 

transfer (Salomon & Perkins, 1989). In part, this recommendation is based on the 

observation that several fundamental questions about transfer have remained unresolved 

despite decades of focused research, including:

•  Why do we see a lot of near transfer and not a lot of far?

• How can A transfer to B more or less than B transfers to A?

I revisit these questions in the discussion section.

A CEDR model of knowledge transfer
The CEDR neural hypothesis explicitly supports a model of knowledge

acquisition, storage, and recall. Not much else about cognitive processes can be inferred 

from this mechanism beyond these basic operations, however. In the context of 

knowledge transfer, in particular, the CEDR hypothesis does not shed any light on the 

differential roles of context (task domain) vs. content (knowledge objects) in cognitive 

processes, and it provides no explicit clues about the nature of physical mechanisms that 

might be involved in transfer. It is nevertheless (or perhaps I should say “it is therefore”) 

quite straightforward to operationalize the main constructs of classical transfer theory 

(distance and amount) in terms compatible with the CEDR mechanism (Figure 4.6).
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Figure 4.6: Knowledge transfer in a CEDR system: a) Theoretical framework; b) Application to a specific example.
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Since the CEDR hypothesis does not intrinsically support a theory of context or 

transfer mechanism, these elements can simply be defined functionally—that is, in terms 

of the observed behavior itself—as they classically have been. For example, in an 

experiment designed to assess the transfer from training in computer programming to 

performance on specific deductive reasoning tasks, a researcher would subjectively 

evaluate how different the programming task is from the application task as a measure of 

transfer distance (Figure 4.6b). In this case, deductive reasoning tasks specified in terms 

o f the programming language syntax would be relatively near transfer compared to 

deductive reasoning tasks couched in the context of a murder mystery narrative (e.g., 

where a series of clues allow an investigator to deduce who committed the crime, why, 

how, where, etc.).

Similarly, the amount of transfer would be assessed based on behavioral 

measurements. For example, if  an experimental group is trained in computer 

programming and a control group is not, and the experimental group correctly solves 

80% of the deductive reasoning tasks on a post-test while the control group only scores 

50% on average, then the researchers might reason that 30% of the knowledge necessary 

to solve the deductive reasoning tasks transferred from the programming training on 

average. It is very straightforward to operationalize the behaviorally grounded constructs 

o f classical transfer theory in terms of the CEDR framework because the latter neither 

informs nor constrains the former. In this sense, the theory of knowledge representation 

based on the hypothetical CEDR neural mechanism and the behaviorally grounded theory 

of knowledge transfer can be developed independently. Without additional relevant 

neural constraints, in fact, it seems like this option is the only one available.
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A CNDR Model of Knowledge Transfer
The CNDR neural hypothesis supports a very different view of the same set of

transfer phenomena. First, there is an obvious role for context in the CNDR system. If 

the system has many little machines connected in “assembly lines” (networks), then 

context would be necessary to switch on the set of machines relevant to the current task 

and switch off the rest (a kind of simultaneous priming effect). Roughly speaking, in this 

model it is plausible that contextual inputs configure the network of machines for the task 

and the task content itself provides the inputs to the resulting assembly line.

Second, the CNDR hypothesis intrinsically supports two different knowledge 

transfer mechanisms (Figure 4.7). The first is a spontaneous generalization mechanism 

(Figure 4.7a). In the case of a mechanical widget-making machine, suppose that the 

widget producer shows the machine design engineer a blue prototype widget made of a 

particular kind of plastic. From that example, the engineer constructs a machine. Once 

the machine is built, however, it is not limited to making blue plastic widgets. If red or 

green plastic is put in, red or green widgets are produced, respectively. If a different kind 

of plastic is used, virtually the same widgets are produced (a form of assimilation). 

Depending on the machine design, it might even be able to handle quite different raw 

materials like rubber or plaster (but probably not solid metal). The point is that the 

machine was designed based on a much more limited set of examples than it is capable of 

handling in practice, which is a type of spontaneous transfer.

The spontaneous generalization feature exhibited by the machine would operate 

analogously in a CNDR information processing system (Figure 4.8). Recall the earlier 

data set involving shoe sizes and math achievement scores (Figure 4.2). In the CNDR 

scenario, a set of five data points was used to construct the linear equation summarizing
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Figure 4.7: Two knowledge transfer mechanisms in a CNDR system: a) Spontaneous generalization; b) Machine re-use.
input output
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Figure 4.8: A concrete example of CNDR transfer mechanism #1 (spontaneous generalization)
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the relationship between shoe size and math achievement. Unlike the CEDR system, the 

CNDR system does not store those five data points verbatim. It is consequently not 

limited to recalling those five “facts.” Given any shoe size, the CNDR representation 

will automatically return an estimate of the associated math achievement score, in the 

same way the widget machine can process any color plastic. In this sense the knowledge 

encoded in a CNDR system is not distinguishable from the spontaneous generalization 

transfer mechanism. That is, the potential to generate the needed information embodied 

in the neural circuitry is simultaneously the actual knowledge that is encoded there and 

also a transfer mechanism.

The second transfer mechanism intrinsic in the CNDR system is based on 

machine-sharing across two or more sets of tasks (Figure 4.7b). Each machine in a 

CNDR system handles a small part of a problem, and in general many machines would be 

involved in any reasonably complex task. Returning to the manufacturing analogy, 

imagine the manufacturer decides to expand his line of widgets. In addition to spherical 

ones, he wants to produce cube-shaped ones as well. Finally, he wants to add a white 

stripe to all the widgets. The machine design engineer could build two independent 

machines: one to make striped spherical widgets and a second one to make striped 

cubical widgets. Assume it takes one month to design each processing step for each 

machine (e.g., one month for the sphere-making step and another month for the striping 

step). Building two independent machines would take two months for the first machine 

and another two months for the second machine. There is zero transfer in this case 

between the two tasks. If she is clever, however, the engineer will opt for a more 

efficient and flexible design involving three machines: one to make blank spheres, one to
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make blank cubes, and a third to paint stripes on whatever kind o f widget is sent through 

it. This design requires two months for the first process (spherical widgets plus stripes) 

and only one month for the second process (to create cubical widgets only—she can reuse 

the striping machine from the first process). In this case, fifty percent o f the design in the 

first task is transferred to the design of the second task by virtue o f the shared machine.

A concrete example of the second CNDR transfer mechanism is illustrated in 

Figure 4.9. Assume our system has “learned” the data set on shoe size and math 

achievement using two machines. The first machine multiplies the input by 11.5 and 

outputs the result. The second machine takes the output from the first machine, subtracts 

38 from it, and outputs the result. The entire process (represented by the left pathway in 

Figure 4.9) represents the data set on shoe size and math achievement. Now imagine that 

we want to represent a second data set involving measurements o f diameter (in meters) 

and age (in years) of several members of a species of giant redwood. A linear equation 

summarizing this data is:

Tree_age = -38 + Tree_diameter*73.8 

We need a new machine that multiplies its input by 73.8 and outputs the result.

We can then feed the output from that machine into the machine we already have from 

the first process that subtracts 38 from its input. This process (represented by the 

pathway on the right in Figure 4.9) represents the data relating tree diameter to age. We 

could have constructed two separate machines that handled the two data sets separately, 

but the solution shown in Figure 4.9 is more efficient—it saves 50% of the effort of 

solving the second problem by re-using part of an existing solution. This is a second 

transfer mechanism, distinct from the spontaneous generalization mechanism. Note,
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Figure 4.9: A concrete example of CNDR transfer mechanism #2 (machine re-use). Imagine we want to represent two 
different data sets that can be summarized with linear equations of different slopes (11.5 and 73.8) but the same intercept (-38). 
Instead of creating two independent neural circuits, we can build two circuits that share the machine that calculates the intercept.

Shoe si/e: 4 in. Tree diameter: 4 m

Shoe 
size (in.)

Math
achievement

This pathway through the system represents: 
Math achievement = -38 + Shoe size* 11.5

Machine shared by both representations •*

295.2

Tree Tree age
diameter (m) ^ ( y e a r s ^ ^

This pathway through the system represents: 
Tree_age = -38 + Tree_diameter*73.8

847.6 yrs

257.2 yea rs  old ( t ree  age)

8 %  (m a th  ach iev em en t)
00
00



www.manaraa.com

189

however, that this mechanism will often make use of the spontaneous generalization 

mechanism. For example, the typical inputs to the second machine coming from the left- 

hand pathway in Figure 4.9 are going to be much smaller than the typical inputs coming 

from the right-hand pathway. When the input “4” is fed into both pathways, for instance, 

the input to the second machine from the left is 46 while the input from the right is 295.2. 

Since the “subtract 38” machine was created using examples from the first data set, it is 

operating out of its design range in the context of the second data set, which means that 

this case of machine re-use embeds within it a case of spontaneous generalization (but at 

a deeper layer o f processing than the input layer).

Comparing the CEDR and CNDR knowledge transfer models
The CEDR and CNDR neural hypotheses support very different models of

knowledge acquisition, storage, and recall. The CEDR model supports a knowledge 

“container” model, organized around discrete “knowledge objects.” The CNDR model, 

in contrast, supports a knowledge “machine” model, organized in terms of implicit 

relationships among knowledge elements embodied directly in the neural tissue that are 

used to generate knowledge on demand.

The CEDR neural hypothesis does not have any obvious direct implications 

extending beyond the knowledge representation model itself. Basically, the container 

model is a passive storage model in the sense that it simply records what is impressed 

upon it—it has no internal structure to speak of that might constrain knowledge 

organization or other cognitive processes (that is, beyond storage and recall). The 

passive character of the CEDR storage model combined with its organization in terms of
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discrete knowledge objects makes it very easy to integrate with classical transfer theory 

(Figure 4.10).

The key elements of transfer theory are transfer amount (how much?) and transfer 

distance (how far?). Classically, transfer amount has been defined functionally in terms 

of behavioral measures, and transfer distance has been defined functionally in terms of 

the subjectively evaluated difference between the learning and application contexts 

(Salomon & Perkins, 1989). Because these key theoretical constructs are defined 

exclusively in terms of behavior, they are effectively insulated from phenomena at the 

neural level. Since the CEDR model does not “show through” in this case to the 

behavioral level and the classical transfer model does not “reach down” to the neural 

level, the theoretical primitives at these two levels can co-exist without conflict—the two 

levels are nearly independent of one another. The one point of overlap occurs because 

the classical transfer framework is, like the CEDR mechanism, organized largely in terms 

of knowledge objects. The very language of “distance” and “amount” o f “transfer” 

suggests a metaphor wherein some object or part of an object is being transported a 

physical distance. This concurrence between the neural CEDR model and the 

behaviorally-grounded transfer theory in the fundamental unit o f analysis (the knowledge 

object) is a factor that suggests the two frameworks are compatible even though they are 

otherwise independent.

The CNDR neural hypothesis, in contrast, provides a model of learning and recall 

that has wider implications for knowledge transfer. In particular, two transfer 

mechanisms emerge as side effects of the basic CNDR representational mechanism: 

spontaneous generalization and machine re-use. These mechanisms would operate at
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Figure 4.10: The CEDR model of knowledge representation integrates seamlessly with the classical theory of knowledge 
transfer. The two theoretical frameworks are at different levels of analysis and nearly independent of one another. The only point 
of contact is the organization of both frameworks around discrete “knowledge objects.”
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every stage of processing from sensory inputs to motor outputs and including every layer 

in between. It stands to reason, therefore, that these neural mechanisms should be 

involved in the observable behaviors associated with knowledge transfer. In addition, the 

CNDR model provides a principled basis for distinguishing between context and content: 

task context configures networks of machines and task content activates the machines 

(that is, provides the raw inputs to them). These implications of the CNDR model 

represent a set of bottom-up theoretical primitives relevant to the behavioral phenomena 

associated with transfer. Classical transfer theory provides a different set of behavior- 

level theoretical primitives (distance, amount, and context) that deal with the same set of 

phenomena. These two sets of theoretical primitives are grounded in different kinds of 

data at different levels of analysis (neural organization and behavior, respectively), yet 

they potentially conflict where they provide different explanations for the same set of 

observable behaviors (Figure 4.11).

As an example of a specific conflict between classical transfer theory and the 

CNDR neural hypothesis, consider the classical continuum from “near” to “far” transfer 

in relation to the two CNDR transfer mechanisms (Figure 4.12). In at least some cases of 

near transfer (e.g., learning to drive a car transfers to driving a rental truck) the CNDR 

spontaneous generalization mechanism would clearly be the dominant one, operating at 

or near the sensory layer (that is, the raw inputs to the whole network). In other words, 

car driving skill transfers readily to truck driving problems because the two problem 

scenarios are very similar in the way they look and feel, supporting spontaneous 

generalization at the first layer of machines. In cases of far transfer, the dominant 

mechanism would be machine re-use (since part of what makes transfer “far” is the fact
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Figure 4.11: The CNDR model of knowledge representation potentially conflicts with the classical theory of knowledge transfer
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Figure 4.12: An example of a conflict between the bottom-up CNDR model of transfer and the top-down classical theory.
The classical model posits a near-to-far continuum of transfer distance. The CNDR model gives rise to two transfer mechanisms: 
spontaneous generalization and machine re-use. These two sets of theoretical primitives represent competing explanations for a 
single set of behavioral phenomena, and they are not easily reconciled with one another.
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that the two tasks are not perceptually similar so spontaneous generalization cannot be 

dominating at the sensory input layer). As I mentioned previously, however, the same 

spontaneous generalization mechanism does operate in cases o f far transfer, although at 

deeper layers o f processing (recall Figure 4.9).

This example highlights several points of incompatibility between the two 

theoretical frameworks. First, the classical “near” to “far” continuum is one-dimensional, 

whereas a measure of transfer distance based on the CNDR framework would be at least 

two-dimensional (since there are two different mechanisms involved). In other words, 

the classical continuum collapses across two qualitatively different neural mechanisms to 

create a one-dimensional behavioral yardstick for measuring transfer distance. There is, 

of course, nothing inherently wrong with making such a theoretical simplification in 

general. This particular case does seem to be problematic, however. For example, one of 

the longstanding open questions in transfer research is “Why do we see a lot of near 

transfer and not a lot of far?” (Salomon & Perkins, 1989). This question is particularly 

vexing to application-oriented researchers who want to design more effective educational 

materials and experiences by increasing the amount of far transfer that is induced by 

them.

Viewed from the CNDR perspective, this puzzle appears to be an artifact o f the 

way the classical “near” to “far” continuum is constructed. That is, a one-dimensional 

behavioral yardstick implies a single underlying neural mechanism that operates 

uniformly in cases of near and far transfer alike. When transfer does not occur uniformly 

across a wide range of “distances,” therefore, the empirical results conflict with the 

theory, giving rise to the puzzle. This puzzle basically dissolves when viewed through
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the CNDR lens. In this view, “near” transfer is subserved primarily by the spontaneous 

generalization mechanism and “far” transfer is subserved primarily (but not exclusively) 

by the re-use of existing neural circuits. Transfer at intermediate distances would rely on 

various blends of the two mechanisms. As such, this framework does not lead to the 

expectation that “near” and “far” transfer should operate uniformly. The puzzle is thus 

seen to be an artifact of the way classical transfer theory is formulated (which could 

explain why decades of research have not been able to resolve it) that does not arise 

within the CNDR framework.

A second point of conflict between the classical and CNDR views stems from 

their fundamentally different units o f analysis. The classical framework is organized 

around knowledge objects, and the distance continuum is based on this unit of analysis. 

Physical objects have the property of translational symmetry: carrying an object from 

point “A” to point “B” does not affect the object in a different way compared to carrying 

the object from point “B” to point “A.” This symmetry property carries over 

metaphorically into the world of knowledge objects. For example, in the imaginary 

experiment described earlier in which transfer was measured from computer 

programming (context A) to deductive reasoning (context B), a knowledge object 

accounting for 30% of the deductive reasoning performance was transferred from the 

programming context. If the experiment were run backward, so that subjects received 

training in deductive reasoning (context B) and then were tested on algorithmic or 

computational problems (context A), one would expect from classical transfer theory that 

the same knowledge object from the first experiment would in this case be learned in the 

deductive reasoning context and transferred back to the programming context. This kind
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of symmetry does not seem to hold in practice, however, leading to the longstanding open 

question, “How can A transfer to B more or less than B transfers to A?” (Salomon & 

Perkins, 1989).

Viewed from the CNDR perspective, this second puzzle is also seen to be an 

artifact of the way the classical transfer framework has been constructed (i.e., in terms of 

knowledge objects). The fundamental CNDR unit of analysis is not the knowledge object 

but the knowledge generating machine. A widget-making machine is specifically 

designed to operate in one direction: it might take molten plastic as its raw input, for 

example, and produce a spherical widget as its output. Such a machine cannot typically 

be run backward, however—if one were to put a spherical widget into either end of the 

machine one would not get molten plastic back out. Thus, the CNDR representational 

unit of analysis does not exhibit the symmetry property attributed to knowledge objects in 

the classical transfer framework. Since the CNDR transfer mechanisms emerge from the 

fundamental representational organization of this kind of system, there would be no 

reason a priori to expect transfer to be symmetrical, either.

For example, a CNDR network trained to play chess at an expert level (context A) 

might construct a network of machines capable o f converting a static board configuration 

into an appropriate next move. The context in this case is well-defined (all chess games 

have a lot in common), and the content (e.g., the pieces, the board configuration, and the 

piece capabilities) only has a few dimensions of interest and is also well-defined. The 

chess-playing CNDR network would therefore have a few inputs (corresponding to the 

relevant aspects of the task) and the context (“chess game”) would be able to configure
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the network reliably for this particular task because there is little ambiguity in the 

relationship between context and content.

The domain of business (context B) has a different structure from the domain of 

chess. The context is more diffuse (“business situation” evokes many more possibilities 

than “chess game”), the content is more diffuse (there could be a large number of relevant 

problem features and they can change over time—for example, individual people have 

capabilities much more complex than the capabilities of chess pieces, and they are always 

learning new skills), and the relationship between context and content is ambiguous and 

variable (the task variables relevant to one problem instance might be different from the 

variables relevant in a different instance of the same kind o f problem). The network of 

machines built to represent business strategy knowledge would therefore have many 

more inputs than the chess machine, and the activation of any particular machine 

configuration in response to a particular problem would tend to be less reliable, or at least 

much more nuanced.

Thinking in terms of transfer between the two contexts, the CNDR scenario is 

very different from a CEDR view based on knowledge objects. There are no 

decontextualized knowledge objects that can be passed symmetrically between two 

different contexts—there are only two very different networks o f machines. If a business 

problem is fed into the chess machine (or, in classical terms, if the chess knowledge is 

transferred to the business domain), then there is a decent chance that a subset of the 

business inputs can be matched reasonably to the chess machine inputs (people are like 

chess pieces, different potential business sites have different strategic value just as 

different areas of the game board do, etc.). Basically, the more complicated business
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problem is being “projected down” onto the smaller chess playing network by either 

compositing or selectively paring down the inputs. Feeding a chess problem into the 

business strategy network, in contrast, involves a process of “projecting up” from the 

smaller chess network to the larger and more diffuse business network. The input to the 

business network would tend to be severely underdetermined in this case. Even if  there is 

some subset of the machine network that would be applicable to chess, there is a good 

chance the impoverished input set would not be able to activate it.

In other words, the statement “people are like chess pieces” (when applying the 

chess network to a business problem) is not symmetrical with “chess pieces are like 

people” (when applying the business network to a chess problem). In the first case 

(“projecting down”), thinking of people as chess pieces activates all the knowledge 

relevant to chess pieces for potential application to people, because chess pieces are less 

complex than people. In the second case (“projecting up”), thinking of chess pieces as 

people leads to the further question, “which features of chess pieces are like which 

features o f people?” The fundamental asymmetries in the CNDR system (at the 

individual machine level and also at the level of two different knowledge networks) thus 

do not lead to the prediction that A should transfer to B the same as B transfers to A, and 

therefore the puzzle arising in classical transfer theory (“how can transfer be unequal in 

the two directions?”) dissolves when viewed from this perspective.

At first blush, it might seem that the incompatibilities between the classical 

transfer and CNDR frameworks could be resolved by simply translating the theoretical 

constructs o f one framework (e.g., “near” and “far” transfer) into the language of the 

other (e.g., spontaneous generalization and machine re-use). This strategy does not seem
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viable in this case, however. For example, the two CNDR transfer mechanisms cannot 

simply be identified with near and far transfer, respectively (recall Figure 4.12). As I 

discussed, spontaneous generalization would be implicated in both near and far transfer, 

and far transfer would depend on both mechanisms, so there is no straightforward way to 

translate the classical distance continuum into CNDR terms or vice-versa. The 

differences between these two theoretical frameworks appear to stem not from superficial 

incompatibilities but from fundamentally incommensurable paradigms.

Conclusions
The starting point for this analysis was the single neuroscience finding that the 

brain uses two distinct mechanisms to store information: synaptic connections and 

dynamic patterns of neural activity. Based on that observation, I described two logically 

possible and mutually exclusive hypotheses (CEDR and CNDR) concerning the 

relationship between the synaptic and activity-based representations. The CEDR 

hypothesis (Coordinated, Equivalent, Distributed Representations) assumes the synaptic 

and activity-based representations are basically copies of one another, which leads to a 

“container” model of knowledge acquisition, storage, and retrieval. The CEDR 

mechanism implies a passive storage system that simply records what is imposed upon it, 

and therefore it has no intrinsic properties that necessarily “show through” to the levels of 

psychological or behavioral phenomena. Consequently, this bottom-up container model 

of knowledge storage can be integrated readily with top-down psychological theories 

grounded in behavioral data, such as the classical theory of knowledge transfer.

The CNDR hypothesis (Coordinated, Non-equivalent, Distributed 

Representations), in contrast, supports a “machine” model of knowledge representation.
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In this model, the synaptic representations determine the structure of neural circuits that 

embody knowledge implicitly, while the activity-based representations hold the explicit 

knowledge associated with sensory inputs, motor outputs, recalled memories, 

intermediate products of processing, etc. Unlike the CEDR model, the CNDR neural 

organization has implications beyond information storage and retrieval. For example, 

two mechanisms of knowledge transfer can be identified as direct consequences o f the 

CNDR representational system: spontaneous generalization and re-use of existing neural 

circuitry. These mechanisms presumably would be causally implicated in observable 

cases o f knowledge transfer. As such, these CNDR transfer mechanisms constitute a 

concrete example of bottom-up (neurally-grounded) characteristics that do “show 

through” at the psychological and behavioral levels. Moreover, I argued that the 

theoretical primitives supported by the CNDR mechanism for explaining knowledge 

transfer are fundamentally incommensurable with the theoretical primitives of classical 

transfer theory grounded in behavioral data.

The research question being addressed in this paper is, “Do different assumptions 

about the brain support qualitatively different theories of particular psychological and/or 

behavioral phenomena? If so, then how?” Based on the results of the preceding 

analyses, the answer is clearly affirmative—the CEDR and CNDR neural hypotheses 

support qualitatively different theories of knowledge transfer at the behavioral level. The 

CEDR assumption does not constrain or inform a behavior-level theory of transfer, but it 

is compatible with the classical theory. The CNDR assumption, in contrast, leads to a 

model of transfer that directly conflicts with—and appears to be irreconcilable with—the 

classical theory.
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The nature of the difference between the two neural hypotheses in terms of their 

higher-order implications for psychology and behavior is illuminating, if  perhaps a bit 

surprising. One might have expected a priori to discover either no psychological 

implications on either side or two sets of implications that could be compared and 

contrasted. Instead, the key difference turns out to be that one hypothesis (CEDR) has no 

such implications while the other (CNDR) does. It would seem that if  the brain is a 

CEDR system, then the assumption that brain and mind can be studied independently is 

perhaps warranted. If the brain is a CNDR system, however, then that assumption is 

contraindicated and psychologists should start thinking about drawing on neuroscience as 

a source of constraints for their psychological and behavioral theories.

If the CEDR system is compatible with the brain-mind independence assumption 

as well as a body of existing psychological and behavioral research and theory, then it 

might seem prudent to simply assume the human nervous system is based on that plan 

and carry on as we always have. The problem with that strategy is twofold. First, 

evolution has endowed us with a particular kind of neural system (be it CEDR, CNDR, or 

some other) and we have to work within the constraints of that underlying reality. While 

we are free to choose the kind of theory we want to build, we are not free to choose the 

kind of brain we actually have. Second, one finding of this analysis is that the two brain- 

level theories considered here do not appear to be interchangeable. The CEDR neural 

model is compatible with a behavioral-level theory that is incommensurable with the 

behavioral implications of the CNDR neural model. Therefore, they cannot both be true 

simultaneously, and it stands to reason that we need to build on the one that is true rather 

than on the one that is theoretically convenient.
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Finally, it might seem as if one can avoid this problem altogether simply by 

refusing to make any assumptions about the brain at all in one’s psychological theorizing. 

The difficulty with that strategy is that developing a psychological theory while assuming 

nothing about the brain is the same as assuming the mind can be described independently 

of neurological considerations. And that assumption is equivalent to the assumption that 

the brain has no intrinsic properties that “show through” to cognition and behavior. But 

that last assumption is tantamount to assuming the brain is a CEDR kind of system. The 

bottom line is that one cannot avoid relying on certain assumptions just by insisting one 

does not rely on them, any more than one can sidestep the behavior-level implications of 

brain organization by assuming they do not exist.
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Chapter 5 

There’s More than One Way to Bridge a Gap: 
A Response to Bruer’s “Bridge Too Far”

Introduction
Educational researchers and practitioners have long been optimistic about the 

possibility that neuroscience findings will inform educational theory and practice. In 

recent years, significant advances in neuroscience—accompanied by a stream of articles 

in newspapers, popular magazines, and professional journals touting the putative 

educational implications of these findings—have made neuroscience references a staple 

in the literature on educational theory, practice, and policy (Bruer, 1997,1999b). 

Unfortunately, most of the educational claims based on these findings range in credibility 

from highly speculative to totally unfounded to downright nonsensical or even 

incomprehensible. Examples include the movement to develop curricula specifically 

tailored to the strengths and weaknesses of the “right-brain” vs. the “left brain,” and more 

recently the popular but unfounded notion that parents can stimulate neural development 

that will boost children's ultimate mathematical abilities simply by exposing them to the 

music o f Mozart from an early age (the so-called “Mozart effect”).

In an effort to debunk some of the more widespread myths and redirect the 

general dialogue in this area into a more promising channel, Bruer (1997) wrote an 

influential paper entitled Education and the Brain: A Bridge Too Far, in which he argues 

that neuroscience cannot now—and possibly never will—inform education directly,
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because the knowledge gap separating neuroscience from education is too large. Bruer1 

concludes that cognitive psychology is a more appropriate basis for a theory of education 

and instruction than neuroscience, that neuroscience findings can only inform education 

indirectly, and that the only feasible indirect route between the two is the one that begins 

with cognitive psychology as a theoretical point of departure and then bridges from this 

perspective to education on one side and neuroscience on the other (Figure 5.1).

I agree with Bruer’s critique of the existing neuroscience and education literature, 

and I hope that his cautionary message will reach the widest possible audience, 

encouraging educators, researchers, journalists, and the general public to adopt a more 

critical stance toward claims concerning the educational implications of particular 

neuroscience findings.

My view differs from his, however, on the current and future prospects for linking 

neuroscience to education. I would argue that Bruer’s analysis is based on a conception 

o f neuroscience that is too circumscribed, and as a result he overlooks some promising 

alternative links from neuroscience to behavior (and education). Specifically, in 

describing the bridge from cognitive psychology to neuroscience, Bruer seems to focus 

much of his attention on neuroimaging techniques within cognitive neuroscience to the 

exclusion of other neuroscience sub-disciplines. I will argue that computational 

neuroscience, in which computer models of the brain are employed to explore the brain- 

mind relationship, is a promising alternative approach for linking neuroscience to 

education.

11 should mention that my purpose is very different from Bruer’s. Whereas his primary aim was to state a 
position on the neuroscience and education debate (Bruer, 2004, personal communication), mine is to 
clarify and evaluate some underlying theoretical issues behind the debate.
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Figure 5.1: Schematic representation of Bruer’s argument about neuroscience 
and education. His basic contention is that neuroscience cannot inform education 
directly, and therefore cognitive psychology is necessary as an intermediate level of 
analysis.
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In this paper, I offer a fresh analysis of the relationships among neuroscience, 

cognitive neuroscience, cognitive psychology, and education that is organized in terms of 

levels of analysis instead of disciplinary boundaries. The result is, I believe, a different 

perspective from Bruer’s on the “gap” separating neuroscience from education. In 

addition, I introduce computational neuroscience into the mix in an effort to illustrate 

how this relatively new framework relates to more established disciplines and 

approaches. I conclude by arguing that computational neuroscience is a promising 

avenue of research with the potential to inform educational research and practice in 

principled ways, even in the near future, and therefore deserves attention from 

educational researchers.

Building Bridges between Neuroscience and Education
The force of the argument depicted in Figure 5.1 derives in part from its 

efficiency in mapping out the relationships among the disciplines o f neuroscience, 

cognitive neuroscience, cognitive psychology, and education while simultaneously 

suggesting how the various disciplines can be roughly identified with the three levels of 

analysis from brain (“neuroscience”) to mind (“cognitive psychology”) to behavior 

(“education”).

The correlation between disciplines and levels of analysis is not perfect, however, 

and in my view this analysis masks important insights that are relevant to the 

neuroscience and education discussion. I therefore endeavor to construct a parallel
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analysis in which I place the disciplines within an organizing framework based on three 

levels of analysis instead of the other way around2.

Defining the Levels of Analysis
As a starting point for defining the three levels of analysis, consider the colloquial 

terms “brain,” “mind,” and “behavior.” Behavior can be defined simply as any directly 

observable externalized action (including such experimentally elicited responses as 

linguistic utterances, button presses, eye movements, etc.).

The word “brain” is most closely associated with the pinkish organ situated inside 

the skull—the complex structure composed of smaller structures like cells, synapses, 

proteins, etc.

The mind can be defined in terms of the other two—roughly speaking, it is 

everything that comes “between” the physical organ of the brain and the externally 

observable behavior. That is, “mind” is an abstract category containing all the internal 

representations and processes not directly observable that enable behavior and that are 

ultimately instantiated physically in the brain.

A conflict arises at this point. The brain is most closely associated with the 

physical organ by that name, but the brain also has a functional aspect. The cells, 

synapses, and neurotransmitters generate entities like physical spike trains. These are 

measurable physical phenomena, and in that sense they should be considered part of the 

brain. However, these phenomena are information-carrying processes (or the products of

2 The full analytic framework introduced in chapter 2— which defines levels o f  analysis in terms o f  inputs, 
outputs, representations, and transformation functions and also specifies mappings between levels— is most 
appropriate for analyzing well-defined and detailed theories and models such as the production system or 
ANN. In this paper I demonstrate how the basic levels-of-analysis framework from that chapter and the 
materialist approach o f “tracking the information flow” it embodies can also be applied fruitfully even to 
compare and contrast disciplines—which tend to be more sprawling and ambiguous, encompassing many 
diverse detailed theories and models—by scaling back the level o f  detail from specific models to 
paradigmatic methods and tools characteristic o f  each discipline.
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processes), not independently stable material structures like cells, and therefore they also 

participate in the mind category (we can refer to these physical brain processes 

collectively as the “brain-mind” to distinguish this description of the mind from 

alternative descriptions derived from other sources of data, such as behavioral 

observation—see discussion below).

In order to understand the difference between structures (such as synapses) and 

activity patterns (such as spike trains), imagine scientists could flash-ffeeze a fully 

functional human brain without damaging it, simultaneously cutting off its energy supply 

and blocking its sensory inputs so all activity would cease completely. All the 

components o f the brain that can be observed while the brain is in this frozen, inactive 

state (including synapses, cells, and neurotransmitters) are structures. All the phenomena 

that existed while the brain was active but disappeared at the moment it was frozen 

(including spike trains and the action potentials that constitute them) are activity patterns.

For my purposes, the distinction between physical entities (including synapses as 

well as spike trains) and functional categories (like “mind” and “behavior”) is as 

important as the distinction between the levels o f analysis, so I introduce the 

nomenclature specified in Figure 5.2 to preserve both. I continue to use the colloquial 

terms “brain,” “mind,” and “behavior” where this does not introduce any ambiguity into 

the discussion.

Reconstructing Bruer’s Bridge
In this section, I examine the links between neuroscience, cognitive neuroscience, 

cognitive psychology, and education from the perspective of the levels of analysis 

defined in the previous section. First, I place each discipline from Figure 5.1 within my
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Figure 5.2: Levels of analysis defined
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physical entities like synapses, cells, neurotransmitters, etc. but not 
functional elements like SDike trains)

Level of Analysis: Internal Activity 
Colloquial Term: Mind 
Definition: A characterization of the internal 
representations and transformations (processes) 
instantiated in the physical (structural) nervous 
svstem that enable observable behavior

Level of Analysis: External Function
Colloquial Term: Behavior
Definition: Any directly observable externalized action (including 
such experimentally elicited responses as linguistic utterances, button 
presses, eye movements, etc.)
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organizing framework from Figure 5.2 (the result is illustrated in Figure 5.3), and then I 

discuss insights and implications following from this alternative analysis.

Cognitive Psychology: The Functional Architecture o f the Mind
Cognitive psychology is “the study of mental activity as an information- 

processing problem” (Gazzaniga, Ivry, & Mangun, 2002, p. 97). The basic approach in 

cognitive psychology involves designing behavioral experiments to test hypotheses about 

the unobservable contents of mind: representations and transformation processes 

(Gazzaniga et al., 2002). In Figure 5 .3 ,1 have therefore placed cognitive psychology at 

the behavioral level, since that is where its data come from, with a dashed arrow pointing 

down to the level of internal function, indicating that from these behavioral data cognitive 

psychologists make inferences about the functional architecture o f the mind—that is, 

about what abstract representations and transformations the mind contains, and what 

effect the transformations have on the representations, without regard for how or where 

those contents are physically realized in the brain.

Cognitive Neuroscience: The Functional Architecture o f the 
Brain

Cognitive neuroscience is, generally speaking, the study of how the brain enables 

the mind (Gazzaniga et al., 2002). Although it encompasses a variety of experimental 

methodologies, this discipline is probably most closely associated with brain imaging 

techniques including fMRI, PET, MEG, and EEG. Indeed, from his examples this seems 

to be what Bruer (1997) primarily has in mind when he refers to cognitive neuroscience, 

so in the present discussion I restrict my comments to those methods.

The basic behavioral paradigm in brain imaging experiments is similar to the 

paradigm used in cognitive psychology. That is, in both cases a subject performs a
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Figure 5.3: Schematic summary of my reanalysis of Bruer’s argument (Figure 5.1), 
organized from the perspective of levels of analysis rather than disciplines
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behavioral task. In addition to behavioral measures, however, in cognitive neuroscience 

brain activity is monitored using one or more of the technologies mentioned above.

These activity patterns are widely assumed to represent the principal brain areas involved 

in the specific behavior under study (Gazzaniga et al., 2002). In other words, fMRI and 

PET scans provide data about “where” in the brain a particular behavior is processed and 

MEG and EEG provide data on its evolution over time (“when”). A major benefit of this 

approach is that it provides fixed points of reference (a brain map and time line) for 

comparing experimentally elicited behaviors with one another. On the one hand, if  two 

behaviors activate roughly the same brain areas along a similar time course, then 

researchers infer that they involve some of the same neural processes. On the other hand, 

if  two ostensibly similar behaviors activate different brain areas (either within a single 

group of subjects or across two different subpopulations) and/or evolve differently over 

time, then researchers conclude that the behaviors are supported by internally distinct 

processes, even though they appear similar externally.

Like cognitive psychological methods, neuroimaging techniques are grounded in 

behavioral data and therefore provide information about functional architecture. Unlike 

cognitive psychology, which typically must make inferences about the mind from 

behavioral data alone, these cognitive neuroscience techniques correlate behavior with 

brain activation patterns, and in this sense they give insight into the functional 

architecture of the brain. Neuroimaging technologies like functional MRI (as well as 

EEG/MEG and PET scans) “detect localized physiological activity within the brain, brain 

function ... rather than brain structure” (Churchland, 1995, p. 299, emphasis in the 

original). For these reasons, I have placed cognitive neuroscience (again, referring only
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to neuroimaging techniques) at two levels in Figure 5.3 (external function and internal 

activity) with a solid double-headed arrow between them to indicate that these techniques 

correlate these two types of data.

Although they represent an important new source of data about the location and 

time course of processing associated with specific behaviors, note that these techniques 

still do not reveal how the brain actually implements these processes, either at the 

structural level (e.g., what role synapses and specific neurotransmitters play in the target 

behavior) or even at the level of brain function (e.g., how a specific pattern o f neural 

firing encodes the target behavior).

Interlude: Reflections on the Bridge
Figure 5.1 summarizes Bruer’s original discipline-based analysis, and Figure 5.3 

summarizes my re-analysis of it, organized from the perspective of three non-overlapping 

levels of analysis spanning from neural structure to overt behavior. Two insights emerge 

at this point.

First, it is apparent that cognitive psychology and cognitive neuroscience are 

mutually complementary because they provide different kinds of information about the 

same general level of analysis (internal activity). If the experimental task is held constant 

(for example, a word-recognition task), then the behavioral data from a cognitive 

psychology experiment (information about mental contents) can be married to data from 

a brain imaging experiment (information about the sites where that information is 

processed, and the time course of that processing). This link is represented by the 

double-headed horizontal arrow in the middle layer of Figure 5.3. Generally speaking, 

cognitive psychology provides a rich database o f hypotheses about the contents o f the
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mind, while cognitive neuroscience provides powerful new methods for testing and 

refining those hypotheses, and each perspective is enriched by the exchange.

Second, the representation in Figure 5.3 suggests that the bridge in Figure 5.1 

does not actually reach all the way down to the level of neural structure. The brain- 

imaging approaches are, in this view, better characterized as bridging from behavior to 

internal activity rather than from internal activity to internal structure (as Figure 5.1 

might seem to imply). They do extend cognitive psychology—by grounding the 

inferences cognitive psychologists were already making about internal activity, but not by 

revealing how brain structures implement mental functions. Indeed, none of the 

disciplines represented in Figure 5.3 addresses the question of how the brain actually 

instantiates the processes that do the work of mental processing. Other branches of 

neuroscience are responsible for those kinds of questions.

“Wet” Neuroscience: Brain Structure and Brain Function
“Wet” neuroscience is the invasive study of the brain in a laboratory setting. Wet 

neuroscientists work at many levels of analysis, from the chemical structure of 

neurotransmitters in molecular neuroscience to the overall organization of the complete 

organ in systems neuroscience (Bear, Connors, & Paradiso, 1996). It is sometimes 

difficult to delineate where structure ends and process begins, but for present purposes it 

is sufficient to think of structures as the physical components of the brain—the properties 

and entities of the inert brain that can be studied reductively using tools like chemical 

assays, dyes, scalpels, and microscopes. These methods and data belong primarily at the 

“internal structure” level of analysis (Figure 5.4). In contrast, brain function can be 

studied in vivo using techniques like single-cell and cell array recording equipment, and
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Figure 5.4: Relationships between major levels of analysis (external behavior, internal 
activity, and internal structure) and key disciplines within cognitive science
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in vitro using various techniques that monitor physical, chemical, or electrical changes 

resulting when a stimulus is applied to a brain preparation (for instance, a brain slice). 

These methods and data belong primarily at the level of “internal activity” (Figure 5.4). 

An upward pointing arrow signifies that the brain structures generate the brain processes, 

and a downward arrow represents the fact that these processes can, in turn, modify the 

underlying structures (for example, as happens during learning). Together, these 

structures and processes constitute the physical brain (indicated in Figure 5.4 by the 

dashed outline labeled “Brain”). Note that the physical brain spans the levels of internal 

structure and internal activity in this framework.

Although wet neuroscience methods can be applied to a variety of questions, they 

are primarily distinguished by their ability to address implementation questions. For 

example, they address how proteins are used to build structures like ion channels that 

regulate the flow of charged particles into and out of neurons, and also how these particle 

flows contribute to the initiation and maintenance of spikes when a neuron fires.

Mind, the Gap
As Figure 5.4 illustrates, multiple disciplinary accounts of mental phenomena 

(that is, phenomena at the level of internal activity) are available. Cognitive psychology 

provides a language for talking about the contents of mind (representations and 

transformations), and brain imaging provides a basis for investigating the location and 

time course of processing. I discussed previously how these two accounts can be linked 

by holding constant the experimental task. As Figure 5.4 illustrates, these approaches 

move from the outside (external behavior) inward (toward internal activity) and their
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theoretical formulations reflect this fact, being rooted in behaviorally-derived categories 

and concepts.

In addition, the brain itself embodies a third “language” for describing neural 

structures and mechanisms that actually do the work, some of which (for example, 

synapses, spike trains, long-term potentiation) have already been identified and are being 

characterized by researchers from various disciplines (see, for example, Alberts et al., 

1994; Andersen & Koeppe, 1992; Bailey & Chen, 1983; Catterall, 1993; Hodgkin & 

Huxley, 1939). In contrast to the other two descriptions of internal activity discussed 

previously, this description moves from the inside (starting with brain structure) outward 

(toward internal activity and external behavior).

In my view, the gap alluded to by Bruer (1997) separating neuroscience from 

behavior and education (identified as “The Gap” in Figure 5.4) arises from the 

disconnection between these multiple descriptions of mind, some rooted in behavior and 

others rooted in neuroscience. Bridging this gap requires a way to translate the concepts 

of cognitive psychology into the language of neuroscience. For instance, “memory 

formation” is a cognitive psychological notion that might be translated into a neurological 

description involving gene expression at a set o f synapses resulting from long-term 

potentiation arising in response to a novel stimulus. This would connect the descriptive 

“what” from cognitive psychology with the explanatory “how” of neural mechanisms.

The feasibility o f making this translation for many cognitive psychological constructs is 

controversial at present (Churchland, 1981; Churchland, 1988; Nunn, 1979; Vitzthum, 

1995; see also chapter 4 for an explicit example of the kind of incompatibility that can 

arise between neurally- and behaviorally-grounded theories).
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My examination of the disciplines in terms of their levels o f analysis (Figure 5.4) 

suggests the following: although neuroimaging techniques from cognitive neuroscience 

do help ground and refine the theories of cognitive psychology, their combined reach still 

does not extend into the area of explanatory neural mechanisms (either functional or 

structural). Therefore, cognitive psychology might not be the ideal ground in which to 

anchor the bridges connecting neuroscience to education. Fortunately, the discipline of 

computational neuroscience offers a distinctly different kind of bridge that could 

complement these other bridges. In addition, educators and psychologists have already 

started traversing the computational neuroscience bridge.

Computational Neuroscience: An Alternate Route
The basic approach in computational neuroscience is to begin with data from 

molecular, cellular, and systems neuroscience and use them to specify a mathematical or 

computational model of neurons and neural networks in order to study how behavioral 

phenomena connect to molecular and cellular phenomena in the brain (Sejnowski, Koch, 

& Churchland, 1988). In most cases, these models are then simulated on computers to 

explore their structure and dynamics, in order to compare their behavior with observed 

behavior o f biological nervous systems or to generate new hypotheses about the 

mechanisms underlying observed behavior. As a group, these models are often referred 

to as artificial neural networks (ANNs).

ANNs take many different forms, useful for studying a range of neural and 

cognitive phenomena at different levels of organization. For example, researchers 

interested in the details o f synaptic and neural dynamics often use very complex, 

biologically realistic models that capture as many of the structural and functional details
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of the individual neuron as possible. On the other end of the spectrum are highly 

simplified models, often used to study phenomena at higher levels of organization (e.g., 

language processing). This approach is followed by many researchers using ANNs to 

study higher cognitive functions and brain-mind connections. The connectionist model, a 

well-studied type of simplified model, is described below.

I wish to emphasize that I focus primarily on the connectionist model in the 

present discussion only because it represents the most accessible and convenient example 

from the larger domain of computational neuroscience. In particular, I do not mean to 

imply that the connectionist model is the only type of extant ANN, that it is necessarily 

the most informative type in terms of the brain-mind connection, or that it is the most 

biologically faithful (although I do believe it captures some critical characteristics of the 

biological system; see chapters 2 and 3 for a discussion of these issues).

The Connectionist Framework
The connectionist model is a specific kind of ANN. In order to explain how these 

models are derived from neurological data, it is convenient to focus on two key findings 

from neuroscience that inform the model design. These neuroscience facts are quite well 

established:

• Neurologically speaking, learning involves processes that modify the structural 
synapses via which neurons in the brain communicate with one another. Evidence 
suggests that this finding applies to many major brain areas and structures, and across 
all the major kinds of learning, including motor, associative, declarative, and episodic 
kinds o f memory formation (Bear et al., 1996).

• In most nervous systems, usable knowledge o f a stimulus is encoded in the dynamic 
and fleeting functional pattern o f  activation across a large number of neurons (Abbott 
& Sejnowski, 1999).
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Figure 5.5 illustrates the relationship between structural synapses and functional 

patterns of activation in a neural network. Learning induces structural changes in a set of 

synapses (making them stronger or weaker). These structural changes affect the 

functional relationships between activation patterns at different points in the network, 

which determine what knowledge is stored in the network and how that information can 

be processed. Note that this thumbnail description embodies a simple explanation for 

how internal structures (that is, neural synapses) relate to internal functions (that is, 

neural activation patterns).

As I mentioned previously, artificial neural networks (ANNs) are mathematical 

models of real neural networks, like those that make up the human brain. Whereas the 

basic processing element in the brain is the neuron, the analogous element in a 

connectionist network is called a node. Figure 5.6 illustrates the correspondence between 

a biological neuron and a simulated connectionist node. Nodes are connected together to 

form networks, sometimes informed by data on neural connectivity patterns in the brain.

Although the nodes themselves are quite simple, the networks they form are 

surprisingly powerful. Indeed, computer scientists have shown that anything computable 

by the human brain is, in principle, also computable by some appropriately specified 

connectionist ANN (Chown, 2004; Hertz, Krogh, & Palmer, 1991). Because 

connectionist models are informed by neuroscience findings, they exhibit characteristics 

of the information processing that goes on in biological nervous systems (McLeod, 

Plunkett, & Rolls, 1998).

Of course, the connectionist model is intentionally very simplified compared to 

the biological nervous system. It is therefore not offered as a complete model of every
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Figure 5.5: Neural structure and neural function, a) Key structures of a neuron 
include the dendrites, cell body, axon, and synapses. A neuron communicates by 
dumping neurotransmitters into the synaptic junction separating it from another 
neuron. These chemicals are detected by the dendrites of the neuron on the other side, 
b) The lightning bolts represent levels o f activation at the neural inputs (dendrites) and 
output (axon). The size of a lightning bolt indicates the level o f activation at a given 
site in the network, which is in turn controlled by the strength of the synapses through 
which it passes in traveling from one neuron to the next. Learning processes change 
the strengths o f  synapses. Thought and action, on the other hand, depend upon the 
patterns o f  activation across many neurons in the network. Synapse strength affects 
the influence of one neuron on another one, shown in panel (b) by the small lightning 
bolt beyond the weak synapse compared to the large lightning bolt at the same site in 
panel (c) beyond the strong synapse.
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a) Two connected neurons, 
showing key structures.

b) Influence o f  one neuron on 
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c) Influence o f  one neuron on 
another, via a strong synapse.
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Figure 5.6: Key structures of a spinal motor neuron (left), and corresponding 
elements of an analogous node from an ANN (right). In the biological neuron, 
dendrites collect stimulation from other neurons. In nonlinear proportion to the total 
stimulation arriving on all the dendrites at one time, the neuron fires, sending activation 
down its axon and on to other neurons connected to it via synapses. The simulated node 
performs a similar operation. It sums its inputs, performs a computation on that sum, 
and sends the result on to other neurons. The efficacy of the biological synapse (which 
is modified by biological learning processes) is represented in the simulated model by 
the weight on the connection between two nodes (which is modified by simulated 
learning algorithms). The output from a neuron is modulated by the synaptic efficacy 
before being input to the next neuron in the chain, just as the output of a node is 
multiplied by the weight before being passed along to the next node in the chain.

a) Biological Neuron b) Artificial Node

dendrites

cell body

Outputaxon

weightsynapse

v
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process involved in human cognition. For example, connectionist networks often have no 

short-term or working memory, the sensory and motor systems are excluded, the modular 

architecture of the brain is generally not accounted for, and affective mechanisms are not 

explicitly included (though some parameters do crudely model some general influences 

of affect). Furthermore, as mentioned above, only a few aspects o f the detailed synaptic 

or cellular behavior are captured in this framework. Nevertheless, many researchers 

think this is a good first approximation to the function of real neurons, (see, for example, 

O'Reilly & Munakata, 2000) and that the analytic simplicity of the model is a worthwhile 

tradeoff against the complexity that goes with strict neural realism.

To summarize, computational neuroscience is a branch of neuroscience that draws 

on wet neuroscience data to construct computer models of neural structures and 

processes, and the connectionist framework is just one example from the universe of 

computational neuroscience models. Researchers study the behavior of the resulting 

models via simulations to glean insight into the operation of biological nervous systems. 

This approach therefore links the level of internal neural structure to the level of internal 

neural activity, enabling researchers to investigate how the neural mechanisms implement 

cognitive processes (Figure 5.7). Moreover, model behavior is often used to make 

inferences about the internal functions generating externally observable human behavior 

(Abdi & Valentin, 1994; Addanki, 1984; Baker, Croot, McLeod, & Paul, 2001; Berg & 

Schade, 2000; Bollaert, 2000; Brady, 1995; Elman, 1989, 1993; Quinn & Johnson, 1997), 

represented in Figure 5.7 by the upward pointing dashed arrow connecting ANN internal 

representations to experimental task behavior.
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Figure 5.7: Computational neuroscience represents a distinct bridge from internal 
neural structure to external behavior that bypasses cognitive psychology, although 
the two often draw on the same experimental tasks and paradigms

External 
Function 

(“Behavior”)

Experimental
Task:

Cognitive
Neuroscience

Maps
correlations

between

Internal
Activity

(“Mind”)

Functional 
Architecture of 

the Brain:
Cog Neuroscience 

(“where” / “when”)

Behavior
Experimental

Task:
Cognitive

Psychology

Experim enta l Task
C o m p u ta t io n a l
N e u r o s c ie n c e

Supports
inferences
about

Functional 
Architecture of the 

Mind:
Cog Psychology 

(“what”)

?

9

Neural

Supports
inferences
about

Processes

♦ ■ /A N N  Interna l  
R ep resen ta t io n s) 

h o w 1

(.jenerutes

Internal
Structure
(“Brain”)

Neural Structure

M odif ies

A N N  M o d el:
Computational
Neuroscience

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

226

In addition, computational neuroscience models are considered a promising tool 

for integrating across many of the other neuroscience disciplines, including wet 

neuroscience (Kandel, Schwartz, & Jessell, 2000) and cognitive neuroscience (Gazzaniga 

et al., 2002; Kosslyn, Chabris, Marsolek, & Koenig, 1992). This point is represented in 

Figure 5.7 by the horizontal dashed lines linking the multiple descriptions at the level of 

“internal activity.” As such, computational neuroscience could complement cognitive 

psychology and cognitive neuroscience by extending their combined reach to the level of 

internal structure. In addition, it is possible that ANNs could link neuroscience to 

behavior without making use of cognitive psychology at all, thereby offering an entirely 

distinct kind of bridge. Either way, computational neuroscience seems worthy of 

attention, as it offers a promising set of tools for crossing the neuroscience-education 

divide in the short term.

Conclusions
In his paper on neuroscience and education, Bruer (1997) identifies cognitive 

psychology as the discipline most central in applying principles from neuroscience to 

education:

There are two shorter bridges, already in place, that indirectly link brain 
function with educational practice. There is a well-established bridge, 
now nearly 50 years old, between education and cognitive psychology.
There is a second bridge, only around 10 years old, between cognitive 
psychology and neuroscience.... Cognitive psychology provides the only 
firm ground we have to anchor these bridges. It is the only way to go if 
we eventually want to move between education and the brain (p. 4).

In this paper, I have constructed a parallel analysis of the relationships between

the disciplines of cognitive psychology, cognitive neuroscience, computational

neuroscience, and wet neuroscience from the perspective of three distinct and non-
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overlapping levels of analysis: external function (“behavior”), internal activity (“mind”), 

and internal structure (“brain”). This alternative analysis raises three challenges to 

Bruer’s conclusions.

First, my analysis suggests that the “bridge between cognitive psychology and 

neuroscience” mentioned above does not actually extend into the realm of physical 

neuroscience to explain how mental processes are implemented in brain structures and 

functions. In my view, it is this gap separating the behavior-based descriptions o f mental 

contents on the one hand from physically grounded explanations of brain function on the 

other that requires bridging, and both cognitive psychology and neuroimaging methods 

fall short o f explaining how to accomplish this.

Second, a survey of extant philosophical positions on the brain-mind relationship 

(reductive materialism, functionalism, and eliminative materialism) reveals that the very 

idea that cognitive psychology can be reconciled with mechanistic neurological 

explanations o f mind—even in principle—is controversial at the present time. In other 

words, it is not obvious that cognitive psychology represents an intermediate point on any 

path from neuroscience to education, let alone a necessary stop along every such path.

Third, an examination of computational neuroscience from the levels-of-analysis 

perspective supports the contention that this approach represents a distinct bridge from 

neuroscience to behavior that could ultimately bypass cognitive psychology altogether, 

challenging the view that the route through cognitive psychology is the only way to 

bridge from neuroscience to education. The emerging literature on ANNs and education 

suggests that educational researchers and practitioners are eager to traverse this bridge in 

their efforts to relate the behavior of ANNs to pedagogy, learning behavior, and
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knowledge organization in people. Moreover, leading researchers in the domains of wet 

neuroscience and cognitive neuroscience point to computational neuroscience as the most 

likely way to integrate multiple theories of mind, to the extent that such an integration 

turns out to be possible.

This analysis suggests that computational neuroscience represents a viable bridge 

from physical neural mechanisms to behavior, and this route has several features to 

recommend it. For one thing, it is solidly anchored at each point: grounded at one end in 

well-defined neural structures and functions, and in observable external behavior at the 

other (in contrast to the one-sided grounding of cognitive psychology in behavior). In 

addition, computational neuroscience represents a single disciplinary framework that 

unifies the levels of organization from neural structures to behavior. Neural data must be 

translated into ANN model properties at one end and ANN activation patterns must be 

related to behavior at the other, but no paradigmatic translations are necessarily required 

in between. In Bruer’s bridge, in contrast, multiple disciplinary boundaries must be 

crossed in making the trek, and each translation introduces new assumptions and layers of 

interpretation.

Perhaps most significantly for educators, the computational neuroscience bridge is 

already open to traffic. In the short term, ANNs are being used in instructional design 

and assessment, and also in some cases to provide the final span of bridge linking 

cognitive psychology and cognitive neuroscience on one hand to wet neuroscience on the 

other. These early efforts require support and validation from improved methods such as 

those discussed in the previous chapters. In the long term, computational neuroscience 

might provide a single unified theoretical framework supporting the principled translation
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of neuroscience findings into educational practice. For all of these reasons, 

computational neuroscience and artificial neural networks warrant serious attention from 

members of the educational research community who are interested in applying 

principles of neuroscience to education in either the short or the long term.
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Chapter 6 

Conclusions: The Elephant in the Classroom 
(and What We Can Do About It)

The brain has become the elephant in the classroom. These days, virtually all 

educational stakeholders—from policy makers and administrators to teachers, parents, 

and even many students themselves—are aware that the brain is a factor in education, but 

no one really knows what to do about it yet. As a result, at the present time educational 

practitioners and policy makers have little choice but to ignore and work around it.

In this thesis, I have argued that excluding the brain from educational theory and 

design has material consequences. In chapter 4, for example, I described how two 

different assumptions about the brain lead to two incompatible psychological and 

behavioral theories of knowledge transfer. That analysis suggests that to the extent such 

theories inform educational designs and strategies, assumptions about the brain do matter 

in educational practice. More importantly, in that analysis I also pointed out why the 

issue cannot be sidestepped simply by remaining agnostic about the brain and refusing to 

make any assumptions about it at all. When one ignores the brain in that way, one 

implicitly assumes the brain tolerates being ignored. While some kinds o f brains (e.g., 

CEDR) evidently can be pushed into a quiet comer and safely forgotten, other kinds of 

brains (e.g., CNDR) refuse to go quietly and continue to rampage about the room 

crashing into things and making their presence known. We are not free to choose our 

elephant—we have to work with the one we have been given. Until we know what kind 

of animal we are dealing with, we ignore it at our own peril.
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Many people are already very interested in applying neuroscience to education, so

it might seem as if I am preaching to the choir. I do not believe that is true, however. My

argument is directed at scientists and scientifically-minded educational researchers. As

Bruer (2002) points out, the vast majority of people interested in exploiting brain science

for educational applications are not members of that community:

Brain science may have caught the fancy of the media, policy advocates, 
and brain-based educators, but the educational research community 
appears to be considerably more reticent. A search of scientific databases 
(MedLine, SciSearch, and Psychlnfo) reveals that published research on 
applications of brain science to general education is nonexistent.
Furthermore, national commissions charged to review research for its 
relevance to educational practice see little of practical value emerging 
from brain science, even though these commissions include 
neuroscientists among their members (p. 1032).

I have reached basically the same conclusion as Bruer in this regard based on my 

own review of the literature. My appeal to the media representatives, policy advocates, 

and brain-based educators who continue to evangelize the putative educational 

implications of brain science prematurely would echo Bruer’s in calling for far more 

restraint and rigor than has been exhibited to date.

My argument that brain assumptions (including the assumption that one can 

ignore the brain) have consequential implications for education is directed particularly 

toward those in the educational research community who are skeptical that neuroscience 

is relevant to education. By itself, that argument would merely tend to incite people 

without suggesting possibilities for action. In the bulk of this thesis, therefore, I have 

described a theoretical framework designed to support rigorous scientific research 

bridging from neuroscience to education. The framework is primarily meant to support 

actual research, but I also offer it as a proof-of-existence to another group of skeptics that
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such research is even possible at the present time. The theoretical framework specifies 

the major steps involved in applying neuroscience to education (Figure 6.1), and includes 

a set of analytical tools, experimental methods, and concrete examples describing and 

demonstrating one implementation of the generation step and the translation step in that 

framework. The evaluation step is not discussed here; a large body of literature already 

documents methods for implementing it (e.g., through the design of controlled outcome 

studies of educational interventions). Together, these three steps are meant to establish a 

“pipeline” that takes basic neuroscience research as its raw input at one end and 

transforms it into validated educational applications that are output at the other end.

In the first step of the research process depicted in Figure 6.1, neuroscience facts 

are used to identify and characterize causal relationships between brain mechanisms and 

observable behavior (Figure 6.2). This is done by embedding the neural observation in a 

computational model (such as an ANN), identifying model behaviors that follow from the 

modeled mechanism, using these behaviors to generate predictions about human 

behavior, and then conducting experiments to test the behavioral predictions against 

human data. The experimental results are used as evidence for or against the 

hypothesized brain-behavior relationship in people. This method is in essence a 

framework for conducting basic research on brain-behavior links that is embedded within 

the overarching applied educational neuroscience research framework. I argued that this 

elaborated generation (and associated validation) step is necessary because the causal 

brain-behavior relationship is a more appropriate basis for informing educational 

interventions than is the raw neuroscience finding.
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Figure 6.1: A minimal (three step) framework for conducting rigorous applied 
research in educational neuroscience
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Figure 6.2: Generation step: Neural observations are used to generate candidate 
brain-behavior relationships.
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In my case study, for example, I started with the observation that the brain 

employs two distinct types of distributed representations (synaptic and activity-based) 

that could in principle be coordinated in at least two distinct ways (producing the CEDR 

and CNDR mechanisms, respectively). I used an ANN to generate two sets of behavioral 

predictions (one about item difficulty and the other about changes in perception of item 

similarity associated with learning the dichotomous categories) following from one of 

them (CNDR). As a first step toward validating the causal brain-behavior CNDR 

mechanism, I tested the behavioral model predictions experimentally against human 

learning data using multi-level regression models. The experimental findings were 

consistent with both sets of model predictions, which I interpret as evidence supporting 

the CNDR hypothesis.

In the second step of the process (Figure 6.3), I translated behaviors identified in 

the first step into potentially useful educational insights. Specifically, I used analytical 

methods to link the hypothesized mechanisms (CEDR and CNDR) to patterns o f behavior 

associated with knowledge transfer to argue that assumptions about the brain have 

consequences for theories of educationally relevant behavior. I also described a set of 

theoretical primitives derived from the CNDR neural mechanism that support a different 

view of knowledge transfer from the classical psychological theory. This alternative 

framework is organized around a completely different unit of analysis (the knowledge 

machine) than that used in the classical theory (the knowledge object). If elaborated, it 

could provide novel (or at least significantly refined) educational theories and design 

principles.
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Figure 6.3: Translation step: The causal brain-behavior link identified in the first 
(generation) step is translated into usable educational theory and design principles.
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In the near term, the insights gleaned from the knowledge transfer analysis could

be applied to design new kinds of transfer experiments. For example, the analysis

suggests that one reason several fundamental unresolved puzzles about knowledge

transfer persist could be because the theoretical primitives upon which the classical

theory is based (transfer distance, transfer amount, and subjectively defined context)

might be incompatible with the neural mechanisms actually involved in the phenomenon

(e.g., spontaneous generalization and machine re-use). A knowledge transfer theory

based on the CNDR theoretical primitives would resolve some of the longstanding

puzzles encountered in classical transfer theory, would generate a different set of

predictions, and would therefore support very different experimental designs. The puzzle 
*

about why we see a lot of near transfer and not a lot of far transfer, for example, would be 

replaced with a set of specific research questions focusing on the ways the two CNDR 

transfer mechanisms interact to produce different amounts and qualities of transfer. One 

specific question would be how the effective “range” (or “receptive field” perhaps) of 

each mechanism relates to the amount of transfer it supports as the task contexts and 

contents become less similar.

A CNDR theory of transfer also suggests novel educational design principles. 

Assume, as I have suggested, that in a CNDR system context activates the relevant 

network of machines for a given task and task content provides the raw inputs to the 

network. There are many different ways a CNDR system could set up its network of 

machines (or neural circuits) during learning to solve any particular task. One goal of 

educational design is to shape educational outcomes across diverse learners more 

precisely (or at least more uniformly). One way to better control the learning outcome in
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such a system would be to over-constrain the input—for instance, by providing additional 

inputs (visual, auditory, or tactile patterns unrelated to the actual content being learned) 

that would bias the system to configure its machine network in a particular way.

In a computerized chess training program, for example, to bias the student’s 

learning process to self-organize around the principle of “material advantage,” the 

computer could subtly (but perceptibly) manipulate the visual contrast or brightness of 

particular pieces or areas of the board to highlight configurations that systematically 

differentiate good and bad examples of material advantage. The student would 

presumably not have to be consciously aware of this feature for it to shape the internal 

representations that are being formed, as long as it is salient enough for the neural system 

to process it as an additional source of relevant information. One empirical question is 

whether the relevant knowledge would still be activated when the scaffolding is not 

present (for example, in a non-computerized game). If one wanted to bias the 

representations to organize around “control of the center” instead of “material 

advantage,” then this same technique could be used to highlight board configurations that 

exemplify good and bad examples of that concept. This example is necessarily quite 

generic, as it is based on the most general features of the CNDR model. A more 

elaborated CNDR-based transfer theory could provide a more nuanced model of 

knowledge transfer that would both expand the range of educational design options and 

support more targeted interventions.

In the third step of the educational neuroscience research process, the prototype 

applications would be evaluated using standard methods—for example, controlled 

outcome studies. In an ideal world, the output from this step would be either a rigorously
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evaluated and demonstrably effective educational application informed by neuroscience 

or some insight into why the design failed to produce the expected results that could be 

used to revise it.

The framework developed in this thesis is of course just one of many possibilities 

for applying neuroscience to education. Indeed, researchers in this domain draw on a 

wide variety of methods, including neuroimaging techniques like fMRI and PET 

(Goswami, 2004), methods like EEG and MEG that monitor the gross time course of 

neural processing (Dehaene, 1996), neural network models (Connell, 2002; Fischer & 

Connell, 2003), and dynamical systems models like mathematical growth models 

(Fischer & Bidell, 1998). One of the major obstacles researchers in this domain currently 

face, in fact, is the lack of a framework or even a common vocabulary for describing the 

standard methods in use and for mapping the relationships among these diverse 

approaches.

In an effort to contribute to current efforts to impose order on the emerging 

domain o f educational neuroscience, in the remainder of this chapter I step back to 

discuss how the framework developed in this thesis fits into the larger universe of 

educational neuroscience methods. To make that possible, I first describe some features 

o f the educational neuroscience domain that make it challenging to impose any kind of 

disciplinary order on it. I then suggest a framework for describing useful research 

methods based on the idea of a pattern language that has been successful in other 

domains with a similar structure, such as architecture and software design.
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The Neuroscience-Education Domain
In the history of science, new “interdisciplinary” domains have sometimes 

emerged at the boundaries between established disciplines, where new and important 

problems arise that cannot be solved within the disciplines themselves but require new 

tools that combine and extend elements (theory, methods, tools) from the foundational 

disciplines. Biochemistry is one such example. The discovery of DNA—a set of 

chemical compounds that provide the blueprints for biological organisms—is the kind of 

event that requires the development of a new discipline (biochemistry) drawing on 

established disciplines (biology and chemistry) yet different from them (Figure 6.4a).

It is tempting to use an interdisciplinary domain like biochemistry as a reference 

model when thinking about the development of a new domain linking neuroscience to 

education (sometimes called “educational neuroscience” or “neuroeducation”). We 

might ask, for example, what problems lie at the intersection between neuroscience and 

education that could be fruitfully approached from a new hybrid discipline combining 

methods of both (Figure 6.4b).

The problem with this analogy is that biology and chemistry are arguably true 

disciplines, each having its own paradigmatic theory and methods, but neither 

neuroscience nor education is a discipline in this same sense. On the one hand, 

“neuroscience” is a generic umbrella term covering many distinct disciplines, while on 

the other hand many educationists do not consider “education” to be a discipline at all in 

the technical sense, but instead a problem-based domain (Figure 6.4c) in which methods, 

data, and theory from a wide variety of disciplines are applied freely, often in ad hoc 

ways, to address specific problems arising in practice. Disciplines are defined by theory
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Figure 6.4: Disciplines, interdisciplinary domains, and problem-based domains

a) Biochemistry is an interdisciplinary domain bridging biology and chemistry.
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b) Educational neuroscience seems like an interdisciplinary domain bridging 
neuroscience and education.
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and methods, whereas education is defined by a context (or set o f related contexts) and a 

set of problems.

In my view, we should not be thinking in terms of a “discipline” of educational 

neuroscience for the reasons just cited. Whatever it turns out to be, it does not look like 

an appropriate disciplinary candidate. In the absence of a disciplinary framework, the 

domain of educational neuroscience will obviously need some alternative structures to 

serve the same purposes. For example, disciplinary frameworks support theory 

development, guide the selection of research methods, support the evaluation and 

interpretation of results, and facilitate communication among members o f the field. 

Organizational structures supporting goals like these would facilitate educational 

neuroscience research by providing standard templates for design, comparison, 

replication, and extension of research studies, and by helping researchers understand the 

diverse approaches being used, including their strengths, weaknesses, and inter

relationships.

The absence of a stable theoretical paradigm in educational neuroscience creates 

another set of challenges as well. That is, researchers within this emerging domain are 

responsible for conducting basic research (for example, conducing fMRI studies of 

dyslexia), facilitating the application of the basic research to education (for instance, 

determining how the fMRI results should inform diagnosis and remediation strategies), 

and evaluating the applications (e.g., assessing the accuracy of the diagnostic criteria and 

the associated interventions). It is highly unusual for all of these diverse requirements to 

be assigned to researchers within a single domain.
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Consider the relationship between the theoretical domain of classical mechanics 

(within physics) and the applied domain of civil engineering, for example. Theoretical 

physicists do not typically design bridges—they develop theory (like Newton’s laws of 

motion) that describes how some part of the world operates. In the case of Newton’s 

laws, the theory has a very wide range of applicability. Similarly, civil engineers do not 

typically work out new physical laws—they mostly apply the relevant stable principles of 

physics (like Newton’s laws) to solve specific problems (like designing cost-effective 

bridges that will not collapse). The relationship between classical mechanics and civil 

engineering is typical of the stable sciences and their sister applied disciplines (for 

example, electrical engineering is mainly an elaboration of Maxwell’s equations, 

mechanical engineering is mainly grounded in Newton’s laws and the fundamental laws 

of thermodynamics, chemical engineering is grounded in the theory of atomic interaction, 

etc.). In fact, it is reasonable to describe these applied domains (in their modem forms, 

anyway) as having grown out of the associated core theory or theories1. Electrical 

engineers do not solve arbitrary problems—they mostly limit their attention to problems 

that can be solved using applications of Maxwell’s equations. Indeed, most of the 

literature in electrical engineering is a body of theory, research, and examples connecting 

Maxwell’s abstract laws to specific contexts and problem types.

The relationship between neuroscience and education is very different from that 

between physics and civil engineering, mechanical engineering, or electrical engineering.

1 This account is, o f  course, a simplification o f the reciprocal process whereby disciplines are typically 
formed. One could argue, for example, that classical mechanics (Newton’s laws in particular) grew out o f  
efforts to solve applied problems in mechanical and/or civil engineering, which is also true enough (Gleick, 
2004). I would suggest, however, that before Newton published his laws, mechanical engineering was not 
a true discipline in Kuhn’s (1996) “paradigmatic” sense— it was a problem-based domain (as education is 
today, although probably much more coherent in the set o f problems it sought to address). Newton’s 
theoretical framework radically reorganized the domain from the foundation upward, providing the 
paradigmatic core that defines the discipline as we know it today.
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On the one hand, neuroscientists have not identified general laws that are widely 

applicable to educational issues (Bruer, 2002). On the other hand, the diverse educational 

problems people seek to address through neuroscience have been around for a long time 

(much longer than modem neuroscience) and do not necessarily have much in common 

with each other. Instead of expanding a core theory outward to address a set of 

appropriate problems as in the more stable applied domains described above, the situation 

in educational neuroscience is reversed. That is, people are starting with an educational 

problem (like dyscalculia or dyslexia) and trying to “drill down” and solve it with 

“neuroscience” (writ large) without any clear indications at the outset of what specific 

tools, theory, or methods—if any—might be most appropriate (or even suitable).

Consider two areas that have been cited as models of promising work linking 

neuroscience and education: early mathematics (Bmer, 1997) and dyslexia (Pare- 

Blagoev, 2005). Based on cognitive developmental research, Case (1996) identified a 

“central conceptual structure” (CCS) for mathematics, which is a set of core cognitive 

structures (like the “mental number line” and its components) upon which a range of 

specific academic mathematical skills (such as basic arithmetic operations like addition 

and subtraction) depend. Based on this theory, Case and his colleagues developed a set 

of educational activities called NumberWorlds (Griffin, 2004; Griffin, Case, & Siegler, 

1994) to facilitate the development of this mathematical CCS. Subsequent research has 

demonstrated the long-term efficacy of these interventions in supporting mathematical 

development for years following the intervention (Griffin, 2004; Griffin et al., 1994). In 

parallel with (and building on) the applied work of psychologists like Case, Griffin, and 

Siegler, cognitive neuroscientists (Dehaene, 1996, 1999; Dehaene, Spelke, Pinel,
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Stanescu, & Tsivkin, 1999) have been mapping the neural correlates of the cognitive 

structures and processes supporting mathematical thinking (for example, the process of 

comparing two numbers to determine which is bigger). This kind of research helps to 

clarify the organization of cognitive processes like the mental number line that have been 

inferred from behavioral data—for example, by giving insight into whether the different 

processing steps occur in series or in parallel, and whether particular interventions target 

specific processing sites or whether their effects are more distributed and diffuse.

The study of dyslexia has followed a similar course. In one case, language 

researchers identified a specific deficit in the ability to process auditory inputs (for 

example, phonemes) of short duration that is implicated in a range of language-learning 

impairments such as dyslexia (Merzenich et al., 1996). Based on this and other findings, 

researchers created a computer-based intervention called Fast For Word to remediate the 

condition (Morlet, Norman, Ray, & Berlin, 2003). In parallel with this applied work, 

cognitive neuroscientists have been conducting studies to map changes in patterns of 

neural activity that correlate with observed behavioral changes (Blake, Strata,

Churchland, & Merzenich, 2002; Fiez, Raichle, Balota, Tallal, & Petersen, 1996; Fiez et 

al., 1995; Temple et al., 2003) to better understand the mechanisms involved (see Pare- 

Blagoev, 2005 for a comprehensive review).

In both cases of educational neuroscience research (mathematical development 

and dyslexia), the basic and applied research are being conducted simultaneously, and 

many researchers are participating directly in both aspects of the process. Moreover, the 

basic research findings tend to be applicable to a fairly narrow range of academic skills— 

not widely generalizable as in the case o f Newton’s laws—which means we are not yet
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seeing the accumulation of stable generally applicable laws that would signal the 

emergence of a disciplinary core in educational neuroscience. For these reasons, it does 

not seem likely that the interdependence of basic and applied research in educational 

neuroscience studies is likely to change in the near future. These factors introduce 

special complexities into the domain and work against efforts to define it as a formal 

discipline.

Design Patterns
People working in other problem-based domains face some of the same 

challenges as educational neuroscience researchers—and for similar reasons. Architects 

and software design engineers, for example, must solve practical problems (e.g., design a 

skyscraper or automate a process, respectively) guided by general principles derived from 

best practices more than by any generally applicable core theory. In the absence of 

disciplinary frameworks, practitioners in both of these domains have benefited 

substantially by making use of a framework called design patterns (Alexander et al.,

1977; Gamma, Helm, Johnson, & Vlissides, 1995) for identifying, abstracting, and 

formalizing elements of successful solutions to common problems for reuse. In the final 

pages of this dissertation, there is only space to sketch how design patterns would apply 

in educational neuroscience. In this section, therefore, I define what design patterns are 

and illustrate with a few concrete examples how they might be used to provide structure 

to this emerging hybrid domain.

Design Patterns Defined
Alexander and colleagues (Alexander et al., 1977), who are credited with 

originating the idea of design patterns in the domain of architecture, describe the basic
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idea thus: “Each pattern describes a problem which occurs over and over again in our 

environment, and then describes the core of the solution to that problem, in such a way 

that you can use this solution a million times over, without ever doing it the same way 

twice” (p. x).

An architectural example of a recurring problem is the outdoor porch. Different 

porches serve different functions—for example, some porches are small and meant to 

shade entryways from the rain and snow, while others are large covered areas where 

people can sit outside shaded from the sun, and still others connect the interior of the 

building to a specific exterior space such as a courtyard. In addition, every porch design 

is unique. In terms of design patterns, what porches have in common (according to 

Alexander) is that they provide a transitional space that is neither inside nor outside, and 

these transitional spaces are important both practically (for example, to shelter people 

from the elements while waiting at the door) and psychologically (for instance, the 

transition from inside to outside or vice versa is less jarring if  it is mediated by a space 

that has elements of interior spaces—like a roof—and exterior spaces—like open walls). 

Viewed in this way, the Porch design pattern provides much more useful information to 

support an architect than would a series of examples alone, because it specifies the 

criteria of a good porch design without constraining the specific details unnecessarily.

The design pattern also formalizes and subjects to public scrutiny a set of well-defined 

criteria for distinguishing good designs from bad ones, which would otherwise only be 

implicitly defined in the heads of experts. Finally, by creating meaningful categories 

applicable to diverse exemplars to which simple names can be attached, design patterns
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support the development of a common vocabulary to facilitate communication among 

members of the field.

Examples of Design Patterns in Educational Neuroscience
I provide three sets of examples to demonstrate the potential utility o f design 

patterns in educational neuroscience. The first set describes “false” design patterns.

These patterns identify features that are common to many examples of bad educational 

neuroscience arguments and should generally be avoided. The second set illustrates how 

design patterns can facilitate the identification and naming of useful categories to 

highlight common patterns across diverse instances that appear very different on the 

surface. The third set of examples illustrates how the suppression of unnecessary detail 

through the use of design patterns emphasizes the meaningful differences between truly 

different patterns.

False Design Patterns
False design patterns identify recurring features o f bad design (Figure 6.5), and

should therefore be avoided. I discussed three such patterns in the introductory chapter 

o f this thesis. The examples I use to illustrate these three patterns have all been discussed 

at length in the literature (Bruer, 1997, 1999a, 1999b, 2002); I use them here to exemplify 

common abstract patterns of reasoning. I have dubbed the first one the pattern of 

Jumping to conclusions. It is characterized by an unsupported leap from a particular 

observation about the brain to an educational recommendation without theoretical or 

empirical support. An example of this pattern is the jump from the observation that the 

two hemispheres of the brain appear to be functionally asymmetrical to the educational
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Figure 6.5: Three common “false” design patterns in educational neuroscience
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conclusion that separate curricula should be tailored to each hemisphere (“right- 

brain/left-brain teaching”). There is no evidence to support this leap (Bruer, 1999a).

I call the second pattern Making data j i t  the theory. In instances of this pattern, 

people typically begin with a cherished educational conclusion and then trawl the 

neuroscience literature for findings that seem compatible with it. These isolated 

neuroscience facts are assembled into a narrative that seems to point toward the a priori 

conclusion. An example of this pattern is the notion that “education should be fun and 

stress-free.” Starting from this “conclusion” (which is actually a premise), one might 

draw on research with rats suggesting that stressful conditions (via the amygdala) tend to 

narrow the animals’ focus (i.e., toward the stressor and behaviors aimed at removing or 

avoiding it) compared to stress-free conditions in which they are more open, playful, and 

inquisitive. This finding might then be used as “evidence” in a chain of reasoning such 

as, “The brain’s response to stress (via the amygdala) is to narrow focus, while the point 

o f education is to broaden minds; therefore, educational environments should be stress- 

free, and even fun!” While many people would agree with the conclusion that education 

should involve low-threat environments and experiences, this is not a conclusion that 

follows from neuroscience—it is an a priori value arrived at through social consensus. In 

my experience, this pattern of Making the data j i t  the theory seems to be the one most 

favored by the brain-based education crowd, who take as their starting point a specific set 

o f recommendations for educational reform and cite isolated findings from brain science 

to substantiate specific frameworks, programs, or interventions consistent with that 

agenda (see also Bruer, 1999a on this point). More generally, this pattern is the most 

useful to people who have something to sell, since they can start with the conclusion that
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the product is good and work backwards to construct a narrative concerning how 

neuroscience indicates the need for the product.

The third false design pattern is called Correlation, not causation. This pattern is 

characterized by a pair of findings—one neurological and the other behavioral—that 

correlate in terms of time course, surface features, or some other dimension. This 

correlation is then used as the basis for an educational recommendation. For example, it 

has been observed that during the early years of life the brain sprouts many synapses 

(synaptogenesis), and that this period is followed by a period of massive pruning. It has 

also been observed that early in life children learn massive amounts of information 

rapidly (e.g., starting with no language they learn one in a couple of years), while many 

elderly people exhibit signs of mild to major cognitive decline (for example, including 

everything from minor general forgetfulness to major memory disorders like Alzheimer’s 

disease). Based on the very loose correlation of the time dimensions of these two sets of 

events (one neurological and the other behavioral), people might conclude that the 

synaptogenesis and priming processes are the cause of a slow cognitive decline starting in 

the early years and growing worse with each passing year until finally manifesting very 

noticeably in old age. The educational recommendation in this case might be to teach 

children as much as possible as early as possible (“use it or lose it!”). This example 

illustrates the false pattern of Correlation, not causation because the causal inference 

upon which the educational recommendation is made is not well supported by the 

observed correlation.

Together, these three abstract patterns account for many of the cases of fallacious 

reasoning in the popular press and in the “brain-based education” literature. My goal in
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abstracting these false patterns is to help people (especially educational practitioners and 

non-educators in general) who wish to be critical consumers of the literature on 

neuroscience and education to distinguish valid arguments from spurious ones.

Design Patterns Suppress Details to Highlight Important Similarities
The second set of examples illustrates how a design pattern can unify a series of

seemingly disparate instances (Figure 6.6). Consider four different sets of research 

methods (the lesion method, fMRI/PET, EEG/MEG, and genetic analysis) from three 

different disciplines (neuropsychology, cognitive neuroscience, and genetics) that provide 

information relevant to educational neuroscience:

1) Neuropsychologists correlate the location of structural brain damage (lesions) 

with patterns of atypical behavior as a way of inferring the functions performed 

in different areas of the brain (Banich, 1997). By providing information about 

how behavior changes when specific brain areas are selectively destroyed, this 

method provides information about where different functions are localized in 

the brain (for example, Broca’s and Wernicke’s language areas that are 

implicated in many language-related disorders) and how different areas depend 

on one another (for example, the role of the hippocampus in long term memory 

formation).

2) Cognitive neuroscientists use technologies like functional magnetic resonance 

imaging (fMRI) and positron emission tomography (PET) that produce high 

spatial resolution pictures of brain activation to correlate specific behavioral 

patterns with the location of increased brain activity during a task. Researchers 

studying the effects of the Fast ForWord language training products have used
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Figure 6.6: Four examples of the Fixed Reference Point design pattern in 
educational neuroscience
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these kinds of technologies to study the neural correlates of behavioral 

changes induced by the intervention (for example, Temple et al., 2003).

3) Cognitive neuroscientists use technologies like electroencephalography (EEG) 

and magnetoencephalography (MEG) to correlate specific behavioral patterns 

with the time course of brain activity during a task. Researchers have used 

these techniques to identify the neural correlates of behaviors involved in 

mathematical reasoning (like number comparison), and to map the 

relationships among these processes (for example, Dehaene, 1996).

4) Geneticists use gene mapping techniques to correlate behavioral syndromes 

(e.g., autism) with specific genetic markers. In recent years, researchers have 

begun using these techniques to identify genetic markers associated with 

cognitive ability and learning disorders (Plomin & Walker, 2003).

In these four cases, the tools, techniques, and data are quite different from one 

another. The genetic example does not even involve the brain explicitly. What could 

they possibly have in common? Abstracting away from the details, the basic method in 

each case involves correlating a set of educationally relevant behaviors with some non- 

behavioral “fixed reference point,” whether this is the location of a brain structure (e.g., a 

lesion), the location of brain activity (e.g., in fMRI), the time course of brain activity 

(e.g., in EEG), or the presence of specific genetic structures. For this reason, I have 

named the design pattern the Fixed Reference Point pattern.

Two key features of all of the methods exemplifying the Fixed Reference Point 

pattern are the following: 1) they are fundamentally comparative in nature, and 2) the 

data being compared is behavioral. In other words, instead of providing direct
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information about what the brain or the genome is doing in any given case, these methods 

allow researchers to compare different behaviors to one another. Researchers often make 

inferences about the function of a specific brain or genome site based on these 

correlations, but that is simply a way of summarizing previous behavioral findings to 

facilitate future behavioral comparisons. For example, once Broca’s area is identified 

from behavioral evidence as a “language area,” then future experimentally elicited 

behaviors that are seen to depend on Broca’s area are identified as “linguistic tasks” (or at 

least as tasks involving linguistic components). This shortcut allows researchers to 

implicitly compare one behavior to the whole history of behaviors studied previously 

(summarized via the label associated with the brain area), instead of having to run 

experiments involving multiple behaviors to make explicit comparisons every time.

Behavioral methods alone (such as those used in cognitive psychology) offer no 

comparable fixed reference point. Consequently, diagnostic categories based on 

behavioral data (such as “dyslexia”) are often found upon closer inspection to aggregate 

many distinct sub-types exhibiting similar behavioral symptoms (e.g., “reading 

difficulties”). Fixed Reference Point methods can help differentiate such categories into 

meaningful sub-categories and even suggest potentially effective remediation strategies 

(e.g., central auditory problems are different from visual problems, the differences might 

not be easy to detect from behavior alone, and identifying which system is involved is 

useful in designing an intervention). In addition, these methods can identify potential 

linkages among behaviors that might seem dissimilar on the surface, if  the different 

behaviors are found to involve overlapping brain centers. Therefore, one educational 

application for which these methods all seem very promising is early and precise
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diagnosis, prevention, and treatment of learning disabilities (Plomin & Walker, 2003).

The Fixed Reference Point design pattern seems to be the predominant one used in 

educational neuroscience at the present time.

Design Patterns Suppress Details to Sharpen Important Distinctions
One of the primary benefits of design patterns is that they suppress unnecessary

detail. In the previous example, I showed how suppressing detail can highlight 

meaningful similarities across different instances of the same pattern. In this final 

example, I discuss how suppressing superficial details can also help illuminate 

meaningful differences distinguishing fundamentally different patterns.

The Fixed Reference Point design pattern described in the previous section is 

grounded in behavior and projects “downward” onto the fixed point (a brain structure, 

brain activity, the genome, etc.). The first (“generation”) step in the research framework 

summarized in Figure 6.1 projects in the opposite direction, from low-level neural 

mechanisms up to behavioral patterns that they cause. I have therefore dubbed this the 

Bottom-up Mechanism design pattern (Figure 6.7).

Abstracting away from the specific details of the framework itself (the use of 

computational models to generate predictions, the specific experimental methods used to 

validate the predictions, etc.), we are left with the generic research question motivating 

this step, which is about the causal relationship between a specific neural mechanism and 

one or more specific patterns of behavior. In my case study, I argued that this method 

(and therefore the design pattern it exemplifies) can suggest new neurally-grounded 

theoretical primitives that challenge existing behaviorally-grounded theories of 

educationally relevant phenomena like knowledge transfer. I expect that novel principles

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

257

Figure 6.7: The framework described in this thesis is one example of the Bottom- 
up Mechanism design pattern in educational neuroscience
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will emerge from such research that can inform the design of pedagogical methods, 

curriculum materials, and assessment instruments.

A comparison of the Fixed Reference Point (Figure 6.6) and Bottom-up 

Mechanism (Figure 6.7) design patterns illustrates how meaningful differences are 

preserved across two distinct patterns even when the details are suppressed. In particular, 

the links between neural (or genomic) structures and behavior point in opposite directions 

in these two patterns. In addition, the kinds of research questions they can address and 

the kinds of educationally relevant insights they are likely to produce are quite different. 

The Fixed Reference Point pattern allows researchers to ask questions about similarities 

and differences between sets of behaviors as projected onto the reference point, and it 

provides information potentially useful for diagnosis, prevention, and remediation of 

atypical conditions. The Bottom-up Mechanism pattern allows researchers to ask 

questions about patterns of behavior that are caused by specific neural mechanisms, and it 

is more likely to provide information that would inform the design of more targeted 

interventions, assessments, and pedagogical methods for either the general population or 

special subgroups.

Note that these design patterns only pertain to the basic research step in each case. 

Separate design patterns should also be identified for the step of translating to education 

and evaluating the resulting intervention. Ideally, researchers should start building a 

library of patterns for each of the three steps that would facilitate each stage of research 

and design. New methods might be identified just by considering all combinatorial 

possibilities among the three sets o f patterns. For example, using the Bottom-up 

Mechanism pattern for the basic research step, it might be possible to base the translation
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(to educational designs) step on the neural mechanism itself (as long as some other 

validation method or at least a rigorous argument is provided so as to avoid Jumping to 

Conclusions), on the behavioral pattem(s) caused by the neural mechanism, or on the 

relationship between the two. Each of these possibilities might be described by a distinct 

translation design pattern that could also be used in conjunction with other basic research 

design patterns and a variety of evaluation design patterns.

(Neuro)Scientific Research in Education
In recent years, researchers, policy makers, funding agencies, and the federal 

government (among others) have been calling for more “scientifically based research in 

education” (Eisenhart & DeHaan, 2005; National Research Council, 2002). It is difficult 

to define “scientific research” even in the natural sciences. It is much more difficult to 

define what it means to do scientific research in the social sciences and education 

(Eisenhart & DeHaan, 2005). In an effort to provide some standards in this area that are 

reasonably uniform yet flexible enough to apply to the diverse range of quantitative and 

qualitative methods being used in education, the National Research Council has identified 

six characteristics associated with scientific research (see Table 6.1; I added the short 

labels for easy reference).

These guiding principles seem to be offered more in the spirit of a set of 

“symptoms” o f scientific research in education rather than as a necessary and sufficient 

checklist. In other words, a research study does not necessarily have to exhibit all of 

these properties to the maximal degree all the time to be considered scientific.

Conversely, a study exhibiting all of these symptoms can utterly fail to be scientific (for 

example, if  the “theory” it draws on is not scientific). In general, however, studies
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exhibiting more of these features (and/or treating each feature more thoroughly) will tend 

to be more scientific than studies exhibiting fewer features (and/or treating individual 

features less thoroughly). Note, however, that these principles will apply differently and 

their relative importance will be weighted differently depending on the context(s), 

discipline(s), and method(s) involved in any particular case.

Table 6.1: Six "guiding principles" for scientific research in education 

Scientific research in education...

.. .poses significant questions that can be investigated 
empirically

.. .links research to relevant theory

.. .uses methods that permit direct investigation of the 
question

.. .provides an explicit and coherent chain of reasoning

.. .replicates and generalizes across studies

.. .makes research public to encourage professional scrutiny 
and critique

(Eisenhart & DeHaan, 2005, p. 3; National Research Council, 2002, pp. 3-5, 54-72)

The guiding principles for scientific research do not themselves constitute a 

design pattern, but they can be used productively in conjunction with the kinds o f design 

patterns described in previous sections. In particular, the symptoms of scientific research 

in Table 6.1 represent one set of normative standards that can be used to evaluate the 

quality of design patterns in educational neuroscience, to identify their specific 

weaknesses, and to compare and contrast different design patterns to one another along 

an evaluative dimension pertaining to scientific rigor. The benefit of applying this set of 

standards to abstract design patterns instead of (or in addition to) specific studies is that 

any conclusions drawn about a design pattern in this regard can be applied to all specific 

instances derived from the abstract pattern. In other words, the design patterns provide a

(Relevance, 
Tractability)
(Cumulativity)
(Validity)

(Soundness)
(Robustness, 
Generality)
(Transparencyj
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mechanism whereby lessons learned and conclusions drawn about the scientific merits 

and weaknesses in one instance (a specific research study) can be highly leveraged 

through propagation to many—if not all—other instances of the same pattern.

A research design or argument can fall short of scientific standards by failing on 

one or more of the dimensions described in Table 6.1. The three “false” design patterns 

described previously, for example, fail primarily and most clearly on the soundness 

dimension. These instances of these patterns completely fail to provide an explicit and 

coherent chain of reasoning linking neuroscience findings to educational implications and 

instead jump directly from neuroscience “premises” to educational “conclusions” (or vice 

versa). In addition, without an explicit and coherent argument linking premises to 

conclusions, there is no way to establish validity, transparency, cumulativitv, robustness. 

or generality. In fact, the only dimension on which instances of the false design patterns 

might succeed is relevance (although it is not clear the questions being addressed are 

tractable).

In terms of logical structure, the three false design patterns in educational 

neuroscience (Jumping to conclusions, Making the data fit  the theory, and Correlation, 

not causation) are distinct from each other. When viewed in the light of criteria for 

scientific research, however, their common flaw becomes evident: they lack a coherent 

argument linking neuroscience findings to educational applications. In many specific 

instances o f these patterns there is a bona fide scientific finding from neuroscience at the 

core of the argument. The problem arises when people try to claim that the entire 

argument (from neuroscience to education) is scientific because one or more o f its 

premises are. Just because a finding has been generated using scientific methods,
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however, does not mean that any arguments based on it or that any conclusions drawn 

from it are scientific. The output (conclusion) of one phase of research is the input 

(hypothesis) to the next, and the six guiding principles need to be applied to each phase 

of a study and/or argument. I have argued that there are at least three phases that need to 

be handled in this way in applying basic neuroscience research to educational practice. 

Arguments based on the false design patterns generally involve at most one scientifically 

rigorous link, and they often erroneously attempt to stretch the scientific “halo” of that 

link to cover the larger argument in its entirety.

The examples of the Fixed Reference Point pattern I described previously (i.e., 

studies based on the lesion method, fMRI, EEG, and genetic studies) meet all six criteria 

of scientific research, but only with respect to the first step (basic research) in the three- 

step research framework depicted in Figure 6.1. Fast ForWord and NumberWorlds are 

two examples that build on the basic research step by adding application and evaluation 

links. The evaluation links in these cases (which take the form of outcome studies 

evaluating the effectiveness of the interventions) support all six criteria as well. The 

application link seems to be of a different sort, however—it requires a chain of reasoning 

linking neuroscience findings to educational designs, but it depends on the basic research 

and evaluation steps for some of the other features (like validity). In other words, the 

application step seems to be of a qualitatively different nature (with respect to the criteria 

of science) than the basic research and evaluation steps, which—although very different 

in the details—have much in common with each other at an abstract level in terms of the 

guiding principles in Table 6.1.
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These examples suggest that scientific research in education entails some special 

sources of complexity, especially as compared to scientific research in the natural 

sciences. In particular, “scientific research” has more than one meaning in education, 

whereas in any given scientific or engineering discipline its meaning is much more 

narrowly and uniformly defined. Furthermore, the guiding principles in Table 6.1 might 

have to be applied multiple times in qualitatively different ways in a single educational 

study. For example, the principles need to be applied appropriately to each of the three 

steps in the educational neuroscience research framework (Figure 6.1), and specific 

requirements and procedures will differ by discipline, level of analysis, basic research vs. 

application vs. evaluation step, etc. Applying the principles once (for example in the 

basic research step within neuroscience) and then drawing ad hoc conclusions about 

educational practice (as instances of the false design patterns do) does not constitute a 

scientific argument.

As I mentioned previously, there are few—if any—examples o f scientific 

research in educational neuroscience that are fully documented in the literature. This 

observation does not imply that researchers are not privately drawing on neuroscience to 

inform their educational designs in authentic and meaningful ways. It does mean, 

however, that anyone proceeding in that manner fails on the transparency dimension, and 

therefore such work does not meet one of the key criteria of scientific research. Science 

is an inherently public process. Even if such work were scientific in every other regard, 

if  the reasoning process is not made public then the work’s validity, soundness, 

robustness, generality, etc. cannot be evaluated by qualified members of the field, and the
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work does not support the accumulation of robust, publicly accessible knowledge that is 

one of the hallmarks of scientific research.

In this dissertation, I have sought to provide a framework, a set o f tools, and a 

case study of educational neuroscience research. I believe the research meets (or at least 

supports) all six criteria described in Table 6.1. Regardless of whether my arguments and 

analyses turn out to be substantively right or wrong, I hope this study will support 

discussion and debate by serving as a concrete example of scientific research in education 

conducted specifically within the context of a school of education. Indeed, given the 

interdisciplinary and application-oriented nature of the work, I do not know where else I 

could have successfully carried it out.
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Appendix A 

Experimental Stimuli
The “face-space” used in the experiment, with representative points labeled

E

0
(0,1)

• •
(H, 1)

0 0
(1, 1)

0 0 0 0 0
•
(0, V4)

0 +
0/2, y*)

0 0
(1, *)

♦ $ $
0/4, %)

■►I(o, o) <y2, o) (i, o)
I generated the face stimuli using the software package Poser 5 by Curious Labs, 
Inc. (http://www.curiouslabs.com). I made the prototype face (in the center) by 
modifying a stock face to make it look more alien. I then systematically varied 
the amount of head tapering to change the distance between the eyes (E), and I 
varied the distance from mouth to eyes to change the face height (F) in equal 
increments to generate all of the other faces from the prototype.
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Appendix B 

Recruiting Flyer

Research Subjects Needed for a Study of Cognition

I am currently recruiting subjects over the age of 21 to participate in a cognitive study as 
part of my dissertation research. The purpose of the study is to test some predictions 
about knowledge construction derived from a computer simulation of human cognition. 
Participants will be asked to complete a task involving visual discrimination and 
categorization of faces.

Duration: Approximately 60 minutes 
Compensation: $10

Contact: Michael Connell
Michael_Connell@gse.harvard.edu
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Appendix C

Informed Consent Form

Informed Consent Form

Please read this consent agreement carefully before agreeing to participate in this 
experiment.

Purpose of the experiment:
To examine the process of knowledge construction.

What you will do in this experiment:
You will view a series of faces on a computer display and categorize them into two 
groups using two buttons on the computer keyboard or other input device (such as a game 
controller). Periodically you will make judgments about which of two faces is most 
similar to a third face, using two other buttons to indicate your response. After you 
complete the computerized tasks, you will answer some questions about your experience 
in the experiment. If you give your permission, I will audiotape your responses to these 
questions.

Time required:
The experiment will take approximately 60 minutes to complete.

Risks:
There are no anticipated risks associated with participating in this study. The effects of 
participating should be comparable to those you would experience from viewing a 
computer monitor for 60 minutes and using a keyboard or game controller.

Benefits:
You will receive $10 for participating in this experiment. At the end of the experiment, I 
will provide a thorough explanation of the experiment and of my hypotheses. I will 
describe the potential implications of the results of the study both if my hypotheses are 
supported and if  they are disconfirmed. I will also be happy to answer any questions you 
might have about this research.

Confidentiality:
Your participation in this experiment will remain confidential, and your identity will not 
be stored with your data. Your responses will be assigned a code number, and the list 
connecting your name with this number will be kept in a secure location and will be 
destroyed once all the data have been collected and analyzed. If you consent to having 
your post-test responses audiotaped, the tapes will be transcribed, identifying information 
will be removed from the transcript, and the transcript will be labeled with the same 
identifying number as the other data. The audiotapes will be stored in a secure location 
and erased once all the data have been collected and analyzed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

268

Future Uses of Experimental Data:
Your response data and any transcripts, stripped of personal identifiers, may be included 
anonymously in future analyses, demonstrations, or presentations.

Participation and Withdrawal:
Your participation in this experiment is completely voluntary, and you may withdraw 
from the experiment at any time without penalty. You will receive payment based on the 
proportion of the experiment that you completed. You may withdraw by informing the 
experimenter that you no longer wish to participate (no questions will be asked).

Contact:
If you have questions about this experiment, please contact Michael W. Connell at the 
Graduate School of Education, Harvard University via email: 
Michael_Connell@gse.harvard.edu.

Who to contact about your rights in this experiment:
Jane Calhoun, Harvard University Committee on the Use of Human Subjects in Research, 
Science Center 128, Cambridge, MA 02138. Phone: 617-495-5459.
E-mail: jcalhoun@fas.harvard.edu.

Agreement:
The purpose and nature of this research have been sufficiently explained and I agree to 
participate in this study. I understand that I am free to withdraw at any time without 
incurring any penalty.

Signature:_________________________________________ D ate:_____________

Name (print):______________________________________
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Background Questionnaire

269

Background Information

Age (years and months):

Sex (circle one): Male Female

Computer Experience:

a) Number of years you have owned a personal computer:_________

b) Number of hours per week you have spent using a computer during the past 

twelve months (on average):_______
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Appendix E 

Taxonomy of Nested Multi-level Regression Models for Categorization Task

T able  E.1: Taxonomy of fitted linear multilevel models describing the relationship between ln(reaction time) in a  dichotomous 
categorization task  and the distance of the stimulus from the category boundary, controlling for subject's age, sex, com puter experience 
hours and years), a s  well a s  the interactions between stimulus d istance and th ese  control variables (subjects=48, observations=959)

Model

P red ic to r
MOt

(uncond) M1t M2t M3t M4t M5t M6t
In tercep t 6.6438**** 6.7285**** 6.7277**** 6.6881**** 6.7559**** 6.719**** 6.6995****

DIST -0.0845**** 0.08451**** 0.06542**** 0.09808**** 0.08032**** 0.07093****
FEMALE -0.06347 0.009776 -0.06349 -0.06338 -0.06349
AGE 0.000186 0.000186 0.00002 0.000186 0.000186
COMP_YRS -0.00617 -0.00617 -0.00617 -0.00175 -0.00617
COMP_HRS 0.001257 0.001256 0.001257 0.001259 0.003526
DIST*FEMALE -0.03527-
DIST* AGE 0.00008
DIST*COMP_YRS -0.00213
DISrCOMP HRS -0.00109*

«u 0 2 0.03769**** 0.04624**** 0.0487**** 0.04868**** 0.04869**** 0.04865**** 0.04866****

GuOul -0.00369 -0.00491- -0.00489- -0 .0049- -0.00489- -0.00489-

O ut2 0 0 0 0 0 0

g£2 0.09863**** 0.09112**** 0.09112**** 0.09079**** 0.09097**** 0.09094**** 0.0907****
-2LL 603.6 528.9 526.1 522.8 524.6 524.3 521.9

M7t a
6.6896

0.04957
0.0244

0.002066
-0.03795-

-0.00116

0.04825 

0 .00434- 

0

0.09032****
520.3

Key: -  p<.10; * p<.05; ** p<.01; *** p<.001; **** p<.0001
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Table E.1 (cont'd): Taxonomy of fitted linear multilevel models describing the relationship between ln(reaction time) in a  dichotom ous 
categorization task  and the distance of the stimulus from the category boundary, controlling for subject's age, sex, com puter experience 
hours and years), a s  well a s  the interactions betw een stimulus d istance and th ese  control variables (subjects=48, observations=959)

Model
P red ic to r M7t b M7t c M7t d M7t e M7t e2 M7t f M8t M9t
In tercept
DIST
FEMALE
AGE
COMP_YRS
COMP_HRS
DIST*FEMALE
DIST*AGE
DIST*COMP_YRS
DIST*COMP HRS

6.6511****
-0.07531***

0.00024

0.002946

0.00002

-0.00101-

6.6431****
-0.07093****

0.000277

0.003089

-0.00109*

6.7315****
-0.07093****

-0.04999

0.001937

-0.00109*

6.7037****
-0.07079****

-0.00233
0.002361

-0.00088
-0.00096

6.7039****
-0.07093****

-0.00395
0.002596

-0.00109*

6.7315****
-0.07093****

-0.04999

0.001937

-0.00109*

6.7179****
-0.06542****

0.01961

-0 .03527-

6.6896****
-0.04957**
0.002066

0.0244
-0 .00116-

-0.03795*

®u02 0.04537**** 0.04537**** 0.04825**** 0.04624**** 0.04625**** 0.04825**** 0.04784**** 0.04825****

OuOul -0.00379 -0.00379 -0.00435 -0.0038 -0.00381 -0 .00435- -0 .00425- -0 .00434-

®ul2 0 0 0 0 0 0 0 0

«e2
-2LL

0.09069****
523.1

0.0907****
523.2

0.0907****
524

0.09067****
523.9

0.0907****
524.1

0.0907****
524

0.09079****
525

0.09032****
520.3

Key: -  p<.10; * p<.05; ** p<.01; *** p<.001; **** p<.0001
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Appendix F

Residuals for Final Model (Categorization Task) 

Level~1 residuals: Categorization Task
M o d e l  7 t :  1 o g _ R T = D I S T _ 1  C O M P _ H R S — C E N T E R E D ,  i n t e r a c t :  D I S T _ l x C O M P _ H R S _ C E N T E R E D  5

0 7 : 2 2  S a t u r d a y ,  J u l y  3 0 ,  2 0 0 5

E

1 . 5 0

P l o t  o f  E * P r e d .  S y m b o l  u s e d  i s  '  +

+  + + + + + + + +  +  + +  + +  
+  +  +  + +  +  + + + +  +  +  +  +

+  + +  + + + + + +  + + + + + + + + +  +  +

+  +  +  + +  +  + +  + + + + + +  + + ■ + + + + + + +  +  +  +

+ + +  +  ♦ +  +  + + + + ♦ +  + +  + +  + +  + + + + +  + +
+  +  +  +  + + + + + + + +  + + +  +  + + +  +  + + +  +  + + +  + +  +  +  +

+  + +  + + +  +  + + +  + + + + + +  + + + + +  + + +  +  +  + + + + +  + ♦  + + +  +  +

+  + + + +  + + + +  +  +  + + + + + + + + + ♦  + + + + +  + + + ♦  +  + +

+  +  + + + + +  +  + +  + + + + + + + + + +  +  + + + + +  +  + + + + +  +  +

+  + + + + + + + + + + + + +  + + + + +  +  +  + + + + + + + + + +  + +  + +  +  +  +  +  +

+  +  + +  + + + + + + +  + + + +  +  + +  + + + + +  +  +  + + + + + +  + +  + +  +

+ + + +  + +  +  +•♦ +  + +  + + + +  + + +  + + +  + + + + + +  + +  + +

+  +  +  + + +  + + +  +  + +  + + + + +  + + + +  + + + + + + + + ♦ + +  +  +  + +  +  ♦

+  + +  + + + + + + + + + +  + + + +  + +  + +  +
+  +  +■ +  + +  + +  + + +  + +  +  + +  + +  + +

+  +  +  + + +  +  +  +  +

sjrffffffffffffrfffffffffffff'fffffffffffffyffffffffffff'ffffffffffffffffffffffffff'ff
6 . 0  6 . 2  6 . 4  6 . 6  6 . 8  7 . 0  7 . 2

P r e d

N O T E :  1  o b s  h a d  m i s s i n g  v a l u e s .  4 2 0  o b s  h i d d e n .
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Level-1 Residuals: Categorization Task (cont’d)
M o d e l  7 t i  l o g _ R T « D I S T _ l  C O M P _ H R S _ C E N T E R E D ,  i n t e r a c t *  D I S T _ l x C O M P _ H R S _ C E N T E R E D  8

0 7 : 2 2  S a t u r d a y ,  J u l y  3 0 ,  2 0 0 5

T h e  U N I V A R I A T E  P r o c e d u r e  

V a r i a b l e :  E

H i s t o g r a m # B o x p l o t

1 . 2 5 + * 2 *

. * * 5 0

1 . 0 5 + * 2 0
_ * 2 0

0 . 8 5 + * 3 0

. * * 5 0

0 . 6 5 + * * * 1 1 0

2 6 1
2 5 1
5 6 1
6 5 1

1 0 0

1 4 4 1 +  1

1 2 7
1 0 2 1

6 4 1
4 3 1

- 0 . 5 5 + * * * * 1 5 1
. * * 7 1

- 0 . 7 5 + * 2 0

*  m a y  r e p r e s e n t  u p  t o  4  c o u n t s

L e v e l - 1  R e s i d u a l s :  C a t e g o r i z a t i o n  T a s k

M o d e l  7 t :  l o g _ R T = D I S T _ l  C O M P _ _ H R S _ C E N T E R E D ,  i n t e r a c t :  D I S T _ l x C O M P _ H R S _ C E N T E R E D  9
0 7 : 2 2  S a t u r d a y ,  J u l y  3 0 ,  2 0 0 5

T h e  U N I V A R I A T E  P r o c e d u r e  
V a r i a b l e :  E

N o r m a l  P r o b a b i l i t y  P l o t  

1 . 2 5 +  *

I
1 . 0 5 +  *

I
0 . 8 5 +  * *|
0 . 6 5 +  * * + + +

j  * * * *  +

0 . 4 5 +  * * *
|

0 . 2 5 +  +  * * * *
| + * * * *

0 . 0 5 +  + * * * * *
|  * * * * *

- 0 . 1 5 +  * * * * *
| * * * * *

- 0 . 3 5 +  * * * * *
| * * * * * +

- 0 . 5 5 +  + * * + + + +
j **++ +

- 0 . 7 5 + * +
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Level-2 Residuals: Categorization Task
M o d e l  It:  l o g _ R T - D I S T _ l  C O M P _ H R S _ C E N T E R E D ,  i n t e r a c t :  D I S T _ l x C O M P _ H R S _ C E N T E R E D  1 0

0 7 : 2 2  S a t u r d a y ,  J u l y  3 0 ,  2 0 0 5

P l o t  o f  U * P r e d .  S y m b o l  u s e d  i s

U
0 . 4

+  +  +  

+  + +

+ +  + + +

+  +  +

+ + +  +  ♦

+  +

+  +  +  + +  +

+  +  ♦  +  + +

+ + +
+ +  +

+  +

+  + +
+  +

+  +

6 . 4  6 . 5  6 . 6  6 . 7  6 . 8  6 . 9

N O T E :  1  o b s  h a d  m i s s i n g  v a l u e s .  7 9 7  o b s  h i d d e n .
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Level-2 Residuals: Categorization Task (cont’d)
M o d e l  7 t s  l o g _ R T « D I S T _ l  C O M P _ H R S _ C E N T E R E D ,  i n t e r a c t :  D I S T _ l x C O M P _ H R S _ C E N T E R E D  1 3

0 7 : 2 2  S a t u r d a y ,  J u l y  3 0 ,  2 0 0 5

T h e  U N I V A R I A T E  P r o c e d u r e  
V a r i a b l e :  U

H i s t o g r a m #
2 8
3 8

20
5 5
7 2

120
6

120
1 3 4

6 0
5 8

88
7 8

5 4
10

4

6

B o x p l o t

- 0 . 4 7 5 + * * *

*  m a y  r e p r e s e n t  u p  t o  3  c o u n t s

N o r m a l  P r o b a b i l i t y  P l o t

* * + +

- 0 . 4 7 5 + * *+ +----+ +----+ +----+ +----+ + -
- 2  - 1  0 +1  +2
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Appendix G

Taxonomy of Nested Multi-level Regression Models for Similarity Task
T able G .1: Similarity Analysis. Taxonomy of fitted mixed logistic models describing the relationship between fraction of within-category

pairs selected in a  visual similarity judgm ent task  and time (while learning w as taking place) controlling for subject's age, sex, 
computer experience (hours and years), a s  well a s  the interactions betw een time and these  control variables (subjects=48, 

________________ observations=240)._______________________________________________________________________ ______________ ____________
Model

P red ic to r
MUM (uncond  

m ean s)
MO (uncond  

grow th) M1
Intercept
Tim e
Fem ale
Age
C om p_Y rs
C om p_H rs
Tim e*Fem ale
Time*Age
Time*Comp_Yrs
T im e*Com pJH rs

0.1746** -0.04474
0.1192**

-0.04177
0.1316*

-0.00532

-0.02327

OuO2 0.1514*** 0.04355 0.04349

ffuOul -0.00099 -0.00097

Oul2 0.04049** 0.04018**

«e2
-2LL

0.01446****
-268.9

0.008634****
-338.3

0.008641****
-338.4

Key: -  p<.1; ‘ p<.05; ** p<.01; *** p<.001; **** p<.0001

M3 M4 M4a
-0.03141
0.06881

0.1196
0.04789

-0.1219
0.3535**

-0.00111
-0.00507-

0.000399

-0.0034

I 0.004201
0.0022

-0.0005*

I 0.04317 0.03446 0.03218

I -0.00055 0.003002 0.005849

I 0.03958** 0.03886** 0.03546**

I 0.008645**** I -338.9
0.008639****

-341.9
0.008617****

-345.6

ro
—i
o \
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Table G .1 : Similarity Analysis. Taxonomy of fitted mixed logistic m odels describing the relationship betw een fraction of with in-category
(cont'd) pairs selected in a  visual similarity judgm ent task  and time (while learning w as taking place) controlling for subject's age, sex,

computer experience (hours and years), a s  well a s  the interactions betw een time and these  control variables (subjects=48,
_______________ observations=240).__________________________________________________________________________________________________

M odel
Predictor M4b M4c
Intercept 0.08462 -0.1118
Tim e 0.1195* 0 .3316-
Fem ale
A ge 0.000389
Com p_Yrs
Com p_H rs -0.00399 -0.00357
Tim e*Fem ale
Tim e*Age -0 .00048-
Tim e*Com p_Yrs
Time*Comp^Hrs 3.63E-04

OuO2 0.03498 0.03215

GuOul 0.001991 0.005901

G ul2 0.0407* 0.03539*

g£2 0.008634**** 0.008618****
-2LL -340.5 -345.6
Key: ~p<.1; * p<.05; ** p<.01; *** p<.001; **** p<0001
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Appendix H 

Logistic Assumption Verification (Similarity Task)
L O G _ O D D S  1 7 : 5 0  S a t u r d a y ,  J u l y  3 0 ,  2 0 0 5  8 1

P l o t  O f  L O G _ O D D S ( F R _ S A M E ) * T I M E .  L e g e n d :  A  »  1  o b s ,  B  =  2  o b s ,  e t c .

5

- 5

- 1 0  “

5 / r / / / / / / / / / / / / / / / / / / ' / / / / / / / / / / / / / / / / / / ■ / / / / / / / / / / / / / / / / / / ' / / / / / / / / / / / / / / / / / / ■ / /  
0 1 2 3 4

S i m i l a r i t y  b l o c k  n u m b e r
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Appendix I

Post-Experimental Questionnaire

Please answer the following questions about the faces you saw in the experiment. 
May I audiotape your responses to these questions? YES NO Initials _

1) W ritten Verbal Description

Briefly describe (in words) what a prototypical GORF looks like:

Briefly describe (in words) what a prototypical DIMP looks like:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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2) Talk Aloud

During the experiment, when you were categorizing a face like the one shown below, 
what was your strategy for deciding whether it is a Dimp or a Gorf? (Describe your 
reasoning process out loud). In particular:

•  What features helped you decide what kind of creature it is?

• Did you rely on any explicit rules to make the decision? If so, what rules?

What kind of creature is this? (Circle one) GORF DIMP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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3) Scaffolded Talk-Aloud

Looking at the sets of GORFs and DIMPs on the next page, please answer the following 
questions, verbalizing your thinking aloud.

a) Circle two GORFs and two DIMPs that were relatively easy for you to identify (if 
there were any). What strategy did you use to identify them during the 
experiment, and what made them easy?

b) Put an “X” through two GORFs and two DIMPs that you found relatively difficult 
to identify (if there were any). What strategy did you use to identify them during 
the experiment, and what made them difficult?

c) Looking at the two sets as a whole, describe the strategy/strategies you used to 
categorize them during the experiment by first describing a feature or rule that 
you used (below) and then identifying specific faces to which you applied it by 
labeling them with the rule number (Rl, R2, etc.).

R l:

(Add as many rules as necessary below)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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